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Abstract.— We study the topological zeta function Ziop £(s) associated to a polynomial
f with complex coefficients. This is a rational function in one variable and we want to de-
termine the numbers that can occur as a pole of some topological zeta function; by defini-
tion these poles are negative rational numbers. We deal with this question in any dimen-
sion. Denote Py, := {so | 3f € Clz1,...,xn] : Ziop r(s) has a pole in so}. We show that
{=(n—=1)/2—1/i|i € Z=1} is a subset of P,; forn =2 and n = 3, the last two authors proved
in [SV] that these are exactly the poles less then —(n—1)/2. As main result we prove that each

rational number in the interval [—(n —1)/2,0) is contained in Py,.

1. INTRODUCTION

Denef and Loeser created in 1992 a new zeta function, which they called the
topological zeta function because of the topological Euler—Poincaré characteristic
turning up in it. Roughly said, the topological zeta function Z,,, ; associated to
a polynomial f is a function containing information we can pick out of each
chosen embedded resolution of f~1{0} C A™. They introduced it in [DL1] in the
following way.

Let f be a polynomial in n variables over C and let h : X — A" be an
embedded resolution of f~'{0}. To define Z,, ; we need some data related to
the embedded resolution (X, h). Let E;,i € S, be the irreducible components of
h=1(f~'{0}), then denote by N; and v; — 1 the multiplicities of F; in the divisor
on X of foh and h*(dzy A ... Adzx,), respectively. The couples (N;, v;),i € S,
are called the numerical data of the resolution (X, h). For I C S we denote also
Er :=NierE; and E} == Er \ (Nj¢rE;). Further we write x(+) for the topological
Euler—Poincaré characteristic.
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Definition.— The local topological zeta function associated to f is the rational
function in one complex variable

Zins(9) = S 0B R HOD T o

IcS el

There is a global version replacing E$ N h~'{0} by E. When we do not specify,
we mean the local one.

Denef and Loeser proved that every embedded resolution gives rise to the same
function, so the topological zeta function is a well-defined singularity invariant
(see [DL1]). Once the motivic Igusa zeta function was introduced, they proved
this result alternatively in [DL2] by showing that this more general zeta function
specialises to the topological one.

In particular the poles of the topological zeta function of f are interesting
numerical invariants. Various conjectures relate them to the eigenvalues of the
local monodromy of f, see for example [DL1]. The poles are part of the set
{=v;/N; | i € S}; therefore the —v;/N; are called the candidate poles. Notice
that the poles are negative rational numbers.

A related numerical invariant of f at 0 € C" is its log canonical threshold
co(f) which is by definition

sup{c € Q| the pair (C", ¢ div f) is log canonical in a neighbourhood of 0}.

It is described in terms of the embedded resolution as ¢y(f) = min{y;/N; | 0 €
h(E;),i € S} (see [Ko2, Proposition 8.5]). It was studied in various papers of
Alexeev, Cheltsov, Ein, de Fernex, Kollar, Kuwata, M°Kernan, Mustata, Park,
Prokhorov, Reid, Shokurov and others. Especially the sets

T, =A{co(f) | f € Clan, ..., aa]},

with n € Z-(, show up in interesting conjectures, see [Al], [Ko|, [Ku], [M°KP],
[Pr] and [Sh]. For n € Z-(, we define similarly the set P, by

Pni={so | 3f € Clz1,...,2,] : Ziops(s) has a pole in sy}.

The case n =1 is trivial: Py = {—1/i | i € Z~}.

From now on we assume that n > 2. A more or less obvious lower bound
for P, is —(n — 1), see [Sel, Section 2.4]. In [SV], the second and the third
author studied the ‘smallest poles’ for n = 2 and n = 3. They showed that

PoN(—o00, —3) = {—3—1 | i € Z>1} and that PsN(—oco, —1) = {-1-1 | i € Z.}.

They expected that this could be generalised to

n—1 n—1

1
P, N (—o0, — ) ={— 5 —z’i€Z>1}7 for all n € Z+1.

In particular, they predicted that the lower bound —(n — 1) could be sharpened
to —n/2. This better bound was recently proven by the second author in [Se2].
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In this article we verify for all n > 4 that {—(n —1)/2 = 1/i | i € Z-=1} C P,
and as main result we show that any rational number in the remaining interval
[—(n —1)/2,0) is a pole of some topological zeta function.

Theorem.— For n > 2 we have [—(n —1)/2,0)NQ C P,.

With the Thom-Sebastiani principle [DL3], % + 23 + -+ + 22 is the obvi-
ous candidate to have —(n—1)/2—1/i as a pole of its associated topological zeta
function. It is not clear a priori that this will be true for all n and 7. We check
this in section 2. For the theorem, however, the key is to find a suitable family
of polynomials.

We will put the useful information of the resolution into a diagram, which
we call the dual intersection graph. It is obtained as follows. One associates a
vertex to each exceptional component in the embedded resolution (represented
by a dot) and to each component of the strict transform of f~1{0} (represented
by a circle). One also associates to each intersection an edge, connecting the
corresponding vertices. The fact that F; has numerical data (N;, ;) is denoted

When the strict transform of f~!'{0} is irreducible, we will denote it by Ej.
Let E; be an exceptional variety and let E;, j € J, be the components that
intersect £; in X. We set o := v; — (v;/N;)N; for j € J; these numbers appear
in the calculation of the residue of Z,, s in —v;/N;.

2. THE SET {—(n—1)/2—1/i|i € Z~1} 1S A SUBSET OF P,

Embedded resolution for xi + x2+---+ 22 =0, n > 4, with i even

After blowing up i/2 times in the origin, we get an embedded resolution
for f. We present the dual intersection graph for ¢ # 2.

1 % ’ )
Eg 4, 2n — 1)
&O% Eipp-1(i—2,(n—1)(i/2-2)+n)
Eijp(i,(n—1)(i/2 — 1) +n)

The exceptional variety F;/, gives the candidate pole —(n —1)/2 — 1/7 in which
we are interested. If ¢ # 2, its residue is

N

1 1 1
1 EO Eo Eo Eo
N (X( Il)+X( IQ)Oéi_l +X( IS)O[O +><( 14)010055_1 ?



where
11
2°2

L =4{= L={-,--1 I3 =1{- I, = 1,0}.
1 {2}’ 2 {272 }a 3 {270}a 4 { ’O}
The Euler—Poincaré characteristics X(E;j), 1 < j <4, are put in Table 1. These
are easily computed since F;/; = P! and Eij5—1 and Ej intersect FEjjp in a

hyperplane and a smooth quadric, respectively.

X(£7,) | nodd | neven

j=11 1 ~1
i=21 0 1
0 2

J=3
j=4 |n—-1| n—2

Table 1

Using that ag = (3 —n)/2 — 1/i and a;/2—1 = 2/i, some easy calculations yield
that the residue is non-zero, for all n € N, n > 4.

When i = 2, we blow up just once in the origin to get an embedded resolution.
By using

2—n
2 )

ap = X(E) =0 (neven), x(E)=1 (nodd),

we conclude that also here the residue is non-zero.

Embedded resolution for x% + x2+---+ 22 =0, n > 4, with i odd

After blowing up (i + 1)/2 times in the origin, followed by blowing up once
more in D := Egiy2NEi_1)2 = P2, we get an embedded resolution with the
following dual intersection graph.

. . ) E1(27n>
i By Bop B paon—1)

N Ei1yai — 1, (n— 1)(i = 3)/2 4 n)

The last exceptional variety has —(n—1)/2—1/i as candidate pole. The relevant
subsets in the computation of the residue are:

i+ 3 1+ 3 1+3 i+1

Il:{ }7 [2:{770}? 13:{ 59 ' 9 }7




: 1 . 1
]4:{2—12—372 . 1 ]5:{2—12—372 . o).

Here E;y3)/2 1 a Pl-bundle over D. For j = 2,3,4 we have that Er, = D and

Ep, is a smooth quadric. With the Euler—Poincaré characteristics of Table 2 and

ag = (3—n)/2 =1/i, a_1y2 = 1/i and o41y2 = (n — 1)/2, we find that the

residue is non-zero, for all n > 4.

X(£7) | nodd | neven
7=1 0 —1
j=2 0 1
] = n—1[] n-1
] = 0 1
J= n—1| n—2
Table 2

Throwing together these results we obtain

n—1
2

1
{— —g|iEZ>1}C,Pn.

Now we checked this expectation, we proceed proving the theorem.

Remark.— Notice that m € P,,_; implies that m € P,,. Indeed, any polyno-
mial f in n — 1 variables can be considered as a polynomial in n variables. An
embedded resolution for f~{0} € C"! induces the obvious analogous one for
40} c C* = C"! x C and, since x(C) = 1, the two associated topological
zeta functions are equal. From this observation it follows that it is sufficient to
prove that [—(n—1)/2, —(n—2)/2)NQ C P,. As we showed in this section that
—(n —1)/2 is contained in P,_; and thus in P,,, we restrict ourselves in the next
sections to the subset (—(n —1)/2,—(n —2)/2) N Q.

3. THE SET (—1/2,0) N Q IS A SUBSET OF P,

Considering how candidate poles look like in the formula of the topologi-
cal zeta function written in terms of newton polyhedra (see [DL1]), the number
—(b+2)/(2a + 2b) seems to appear as a candidate pole of the topological zeta
function associated to f(x,y) = x%(2® + y?), where a and b are positive integers.
An easy computation yields:



Lemma.— When a and b run through 2Z~o, a # 2, the quotient —(b+2)/(2a+2b)
takes all rational values in (—1/2,0).

Taking the lemma into account, the functions f(z,y) = 2%(2® + y?), where
a,b € 27~ and a # 2, could be a pretty nice choice to obtain all desired poles.
Easy calculations give the following dual resolution graph for f.

El(a + 27 2)

E E
ot Lo By 41_<: Es(a+4,3)
E3<CL + 674)

Eb/z_l(a + b— 2, b/2)
Eb/z(a, -+ b, b/2 + 1)

Because Ejy)p is intersected three times by other components, Theorem 4.3 in
[Ve2] allows us to conclude that —(b+ 2)/(2a + 2b) is a pole of Z,, .

4. THE SET (—(n—1)/2,—(n—2)/2)NQ IS A SUBSET OF P,, n >3

As this set is a translation by —1/2 of expected poles in dimension n — 1, the
Thom-Sebastiani principle in [DL3] is again the motivation why we consider

fly, . yxn) =22 -+ 22+ 29(ab + 22),

where a € 27~ and a # 2, to reach the set (—(n —1)/2,—(n —2)/2) N Q.

Embedded resolution for z% + x%(x® + y?)

Let us first explain in dimension 3 which embedded resolution we choose
for 22 + 2%(x® +4?) (a,b € 2Z+0, a # 2). We first blow up in the singular locus
{z = z =0} of f and further always in the singular locus of the strict transform;
the first a/2 times this is an affine line and the last /2 times it is a point. In
Table 3 we summerise the relevant information.



number ¢ of | centre blow-up | equation strict transform
blow-up in relevant chart
1 r=2=0 22+ 29722 4+ ¢?)
2 r=2=0 22 + 2074 (2 4+ ¢?)
a/2 r=2=0 22 b 92
a/2+1 (0,0,0) 22+ xb72 4y
a/2+2 (0,0,0) 22+ bt 4y
(@+b)/2 | (0,0,0) ERRp
Table 3

The dual intersection graph looks as follows. Ei(2,2)

E\  FEyy Fy By Eap Eap  F(4,3)

— ﬁ—i 7 Eqpa(a,a/2+1)
Ea/2+1(a+2,a/2—|—3)
Ea/2+2(a+4,a/2+5)
Easny2(a+b,a/2+b+1)

The candidate pole given by the last exceptional surface, E,4p)/2, is equal to

Ca/2+b+1  b+2 1

a+b  2a+2 2

and thus covers all rational numbers in (—1, —1/2) if a and b run over 2Z-, and
a # 2.
Embedded resolution for x? + .-+ x2 + x$(2® + 22), n > 3
The sequence of blow-ups in Table 4 yields an embedded resolution for
f@n,. o mn) =an + -+ g+ ai(a) +23),

based on the previous one for n = 3.



number ¢ of centre blow-up equation strict transform
blow-up in relevant chart
1 Ty =r3=x4=- =2, =0 |22+ + 22+ 2522} + 22
2 Ty =r3=x4=-=x, =0 |22+ + 22+ 2542} + 22
a/2 vp=a3=a4=- =2, =0| a}4-- a3 +a]+a3
a/2+1 (0,0,...,0) AR R R L
a/2+2 (0,0,...,0) a2+ a4t 4 2l
(a+b)/2 (0,0,...,0) 24 a2+ 1423
Table 4

The dual intersection graph here looks as follows.

Ei(2,n—1)
E Ea i FEa FEa E. 1
' sl s et 20 Ey(4,2n—3)

W Eoa(a, (n — 2)a/2 + 1)
Eojari(a+2,(n—2)a/2+n)

E(a+b)/2(a + b, (n — 2)(CL+ b)/2 + b/2 + 1)

Now —v(q15)/2/Na+b)/2 is equal to

~a/24b+1+((a+b)/2)(n=3)  b+2 n-2

a+b 2420 2

which covers the interval (—(n—1)/2, —(n—2)/2)NQ when a and b vary in 2Z
with a # 2.

The rational number —v(qib)/2/N(a+b)/2 15 a pole of Z;op ¢

For all n > 3 and f(x1,...,2,) = 22 + -+ + 23 + 2$(2} + 23), we calcu-
late the residue of Z;op 5 in —v(a48)/2/N(ayb)/2- Observe that if (a+b)/(2+0) € Z,
the exceptional variety Eqs)/(245) induces the same candidate pole as Eq4)/2-
The other exceptional varieties always give rise to other candidate poles.

The subsets playing a role in the contribution of E,14)/244) to the residue are

_{G_M} _{a_“Lba_er_ } _{“+b a+b+}
oy T Yoy RS WL S ’
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a+b a+b a+b a+b a+b
R A A N R
Notice that when n = 3, E(,44)/2+4v) does not intersect Ej.
We have that E(q4)/(245) 18 isomorphic to the cartesian product of A' and the
blowing-up of P*~2 in a point. It is also easy to describe the whole intersection
configuration on E(, ) /(2+b)-

+1,0}.

X(E3,) | nodd | neven

k=1 0 0
k=2 1 0
k=3 1 0
k= 0 0
k= n—3| n—2

k=6 |n—3| n—2

Table 5

With the relevant Euler—Poincaré characteristics of Table 5 and a(q44)/245)-1 =
1/i, (atp)/240)11 = —1/i, we see that E(qip)/(245 does not give any contribu-
tion to the residue in —v(q1p)/2/Nats)/2. Alternatively, this is implied by [Vel,
Proposition 6.5]. This means we only have to take the contribution of Elayv)/2
into account.

To compute this contribution the relevant subsets for the summation in the
formula of the topological zeta function are

a—+b a+b a+b a-+b a+b a+b
I, = I, = -1}, Is = oL, I, =
1 { 2 }7 2 { 92 ) 9 }7 3 { 9 3 }7 4 { 2 ) 92

The Euler—Poincaré characteristics X(E})j), 1 < j < 4, are the same as those
given in Table 1 and we have g = —((n — 4)a + (n — 3)b + 2)/(2(a + b)) and
Aart)/2-1 = (2 —a)/(a+D).
As the residue then is equal to
(—2+ 3a+ 2b)(na —2a — b+ nb + 2)
(=24 a)(a+b)(na —4a + 2 + nb — 3b)
(24 b)(na —2a —b+nb+2)
(=2 +a)(a+0b)(na —4a + 2+ nb — 3b)

we find that —(v(a45)/2)/ (Nats)2) = —(0+2)/(2a + 2b) — (n — 2)/2 is a pole of
Ztop,f'

—1,0}.

for n odd and

for n even,

We conclude that (—(n —1)/2,—(n —2)/2) N Q C P,, for all n > 3.



5. SOME REMARKS

(1) Instead of achieving this result with the method of resolution of singularities
one can find the poles of the topological zeta function of the polynomials

24l ai(ab +22) and 2244232l

with the help of Newton polyhedra. Indeed, we can write down the topological
zeta function for these polynomials using the formula of Denef and Loeser in
[DL1]. For example if f(x1,...,2,) =22 + -+ 23 + 2¢(2b + 23), where a and b
are positive even integers and a # 2, put A := (a+b)s+14+b/24+(n—2)(a+b)/2
and B :=as+ 14 (n —2)a/2. We get

Zips(s) = (n—Deb 4 Ly (n—2)

2AB A 2B
s o= (n—2 a b i
o d; (d+ 1) (ﬁ * 2AB) (=2)

n—1 n—2
n—1\1 n—2\ b
—(—2)4 ——(=2)4].
+Z(d)A< A (d)QAB( ))
d=1 d=1
Handling the problem in this way leads to the same results. One just has to be

careful with the dual cones of some faces, namely those that are not a rational
simplicial cone.

(2) With a similar definition of P, in each case, the same results hold for lo-
cal and global versions of the motivic zeta function, the Hodge zeta function and
Igusa’s zeta function. Indeed, the results for the topological zeta function imply
the results for those ‘finer’ zeta functions.
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