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Abstract

We study the local topological zeta function associated to a complex
function that is holomorphic at the origin of C? (respectively C*). We
determine all possible poles less than —1/2 (respectively —1). On C? our
result is a generalization of the fact that the log canonical threshold is
never in |5/6, 1[. Similar statements are true for the motivic zeta function.

1 Introduction

(1.1) Let f be the germ of a holomorphic function on a neighbourhood of the
origin 0 in C" which satisfies f(0) = 0 and which is not identically zero. Let
g:V — U C C" be an embedded resolution of a representative of f~1{0}. We
denote by E;, i € T, the irreducible components of ¢~!(f~'{0}), and by N; and
v; — 1 the multiplicities of f o g and g*(dx; A --- A dx,,) along E;. The (N;, v;),
i € T, are called the numerical data of the resolution (V,g). For I C T denote

also E[ = miEIEi and E[iz E[ \ (U]¢1EJ)
The set of germs of holomorphic functions on a neighbourhood of 0 € C* will
be denoted by O,.

(1.2) To f one associates the local topological zeta function

Z5(5) = Zopos(s) == 3 x(Er ng™ O [

ICT 1€l

1
Vi + SNZ"

Here s is a complex variable and x(-) denotes the topological Euler-Poincaré
characteristic. The remarkable fact that Z(s) does not depend on the chosen
resolution was first proved in [DL1] by expressing it as a limit of Igusa’s p-adic
zeta functions.
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(1.3) The log canonical threshold ¢q(f) of f at 0 € C" is by definition
sup{c € Q| the pair (C", ¢ div f) is log canonical in a neighbourhood of 0}.

We can describe it (see [Ko02, Prop 8.5]) in terms of the embedded resolution
(V,g) as ¢(f) = min{y;/N; | i € T'}. In particular, this minimum is independent
of the chosen resolution. Consequently, —cy(f) is the largest candidate pole of
Z;(s). The log canonical threshold has already been studied in various papers of
Alexeev, Ein, Kollar, Kuwata, Mustata, Prokhorov, Reid, Shokurov and others;
especially the sets

To = {co(f) | € On},

with n € Z~, are the subject of interesting conjectures.

[t is natural to investigate whether more quotients —v;/Nj;, i € T, yield invari-
ants of the germ of f at 0. Of course, the whole set {—v;/N; | i € T} depends on
the chosen resolution (for n=2 however one could consider such a set associated
to the minimal resolution); but its subset consisting of the poles of Z¢(s) is an in-
variant of f. Philosophically, these poles are induced by ‘important’ components
E;, which occur in every resolution. For n € Z+,, we define the set P,, by

P :={so | 3f € O, : Zf(s) has a pole in sy }.
The case n =1 is trivial: Ty = {1/i |i € Zso} and Py = {—1/i | i € Z~o}.

(1.4) When n = 2, it is known that 75N]5/6,1[= 0 (see [Kul] or [Re]). Because
it follows from [Ved] that —co(f) is a pole (and thus the largest pole) of Z;(s),
the statement P,N] — 1, —5/6[= () would be a remarkable generalization. It is in
fact not hard to prove this generalization. In this article, we will prove more:

Pon] — o0, —1/2[ = {-1/2-1/i]i€ Z:1} (1)
= {-1,-5/6,-3/4,-7/10,...}.

(1.5) Kollér proved in [Kol] that 730]41/42,1[= 0. It turns out that there is no
analogous result for P3;. Actually, we will give examples of zeta functions with
poles in | — 1, —41/42[ which are moreover arbitrarily near to —1. On the other
hand, we prove the analogue of (1), which appears to be

Pyn] — oo, —1[ = {-1—1/i|i€ Zs,}. 2)

In general, we expect that P,N] —oo, —(n—1)/2[={—(n—1)/2—1/i |i € Zs,}.
Remark. One can easily show that P,N] — oo, —n+1[=0if n > 2.



2 Curves

(2.1) We will determine PoN] — 0o, —1/2[. Let f be the germ of a holomorphic
function on a neighbourhood of the origin 0 in C? which satisfies f(0) = 0 and
which is not identically zero. Let (V,g) be the minimal embedded resolution of
fHO0}. Write g = gy 0---0 gy as a composition of blowing-ups g;, i € T, :=
{1,...,t}. The exceptional curve of ¢g; and also the strict transforms of this
curve are denoted by E;. The irreducible components of f~'{0} and their strict
transforms are denoted by Ej;, j € Tj.

(2.2) The dual (minimal) embedded resolution graph of f~'{0} is obtained as
follows. One associates a vertex to each exceptional curve in the minimal embed-
ded resolution (represented by a dot), and to each branch of the strict transform
of f71{0} (represented by a circle). One also associates to each intersection an
edge, connecting the corresponding vertices. The fact that E; has numerical data

(Ni7 Vi) is denoted by Ez(Nza Vi)-

(2.3) Let E; be an exceptional curve and let £}, j € J, be the components that
intersect E; in V. Set o; = v; — (v;/N;)N; for j € J. Then we have the relation

D (aj—1)+2=0, (3)

jeJ

which was first proved by Loeser in [Lo|, and later more conceptually by the
second author in [Vel].

Suppose that «; # 0, which is equivalent to —v;/N; # —v;/N;, for all j € J.
Then the contribution of E; to the residue R of Z(s) at the candidate pole

_Vz/Nz is
¥ (><<El~}> + qu) - ()

jeJ
From (3) and (4) it follows that R = 0 if J contains one or two elements. This

is the easy part of the following theorem. The other part is more difficult and is
proved in [Ved].

(2.4) Theorem. We have that s is a pole of Z¢(s) if and only if sy = —v;/N; for
some exceptional curve E; intersecting at least three times other components, or
so = —1/Nj for some irreducible component E; of the strict transform of f~'{0}.

The following lemma is obtained by elementary calculations.

(2.5) Lemma. Suppose that we have blown up k times but we have not yet an
embedded resolution. Let P be a point of the strict transform of f~*{0} with



multiplicity p in which we do not have normal crossings yet. Let g, be the
blowing-up at P.

(a) Suppose that two exceptional curves E; and E; contain P. Then the
new candidate pole —vjy1 /Ny = —(vi + v;)/(Ni + N; + p) is larger than
min{—l/i/Ni, _V]/N]}

(b) Suppose that exactly one exceptional curve E; contains P and that y > 2.
Then Ejy has numerical data (N;+p, v;+1) and —(v;+1)/(N;+p) is in between
—1/p and —v;/N;.

(¢) Suppose that exactly one exceptional curve E; contains P and that u = 1.
Remark that the two curves are tangent at P because we do not have normal
crossings at P. Let gxi o be the blowing-up at E; N Eyy,. Because the strict
transform of f~'{0} does not intersect Ej,, after this blowing-up, we do not
have to blow up at a point of Ey, anymore. Because Ej; is intersected once, it
follows from (2.3) that the contribution of Ey., to the residue at the candidate
pole —vyy1/Ng1 is zero. The numerical data of Ey o are (2N; + 2,2v; + 1), and
—(2v; +1)/(2N; +2) is in between —1/2 and —v;/N;.

(2.6) Suppose that after some blowing-ups, we do not have normal crossings at
a point P. Suppose also that the candidate poles associated to the exceptional
curves through P are all larger than or equal to —1/2. Then it follows from the
above lemma that the components above P in the final resolution do not give a
contribution to a pole less than —1/2.

Corollary. Zeta functions of singularities of multiplicity at least 4 do not have
a pole in | — oo, —1/2[\{—1}.

Indeed, every exceptional curve in the minimal resolution of f~'{0} lies above a
point of E; (considered in the stage when it is created), which has a candidate
pole larger than or equal to —1/2.

(2.7) To deal with multiplicity 2 and 3, we will study an ‘easier’ element of
O, with the same zeta function. We mention two methods to obtain a simple
function with this property.

METHOD 1. (See [Ku2|) Let f € O,, have multiplicity d and let f; be the homo-
geneous part of degree d in the Taylor series of f. Let N € Z~,. Take a maximal
set 1V of homogeneous polynomials of degree larger than d and at most N which
are linearly independent in the quotient vector space O,,/(0f4/0x1,...,0fq/0z,).
Then f is holomorphically equivalent to fq+>_ a;u; + @, for some a; € C and
some ¢ € O, which satisfies mult(p) > N.

u; €V

Remark. (i) The similar statement in [Ku2, Lemma 3.2] is not correct; some
homogeneity condition is needed.

(i) Let f~'{0} have an isolated singularity at the origin and suppose that we
have an embedded resolution which is an isomorphism outside this singularity.



Then ¢ does not influence the embedded resolution and the numerical data if
N is big enough. Consequently, to calculate the local topological zeta function,
we can omit ¢ if we take N big enough. Note that when n = 2, f~'{0} has an
isolated singularity at 0 if and only if f is reduced and mult(f) > 2.

METHOD 2. (Weierstrass Preparation Theorem) If f(zy,..., 2, 1,w) = f(z,w) €
O, is not identically zero on the w-axis, then f can be written uniquely as
f=(w®+ a1 (z)w™ + -+ + a.(2))h, where a;(z) € O,,_; satisfies a;(0) = 0 and
h € O, satisfies h(0) # 0.

Because h(0) # 0, the resolutions and the local topological zeta functions of f
and w® + ay(2)w* ! 4+ -+ + a.(z) are the same. After an appropriate coordi-
nate transformation, the desired form will appear. For example, the coordinate
transformation (z,w) — (z,w — a;(z)/e) cancels the term a;(z)w®".

(2.8) Example. Let f € Oy have multiplicity 3 and let f3 = y* +2y? = y*(y + ).
First we illustrate method 1. Because df3/0x = y? and 0f3/0y = 3y*? + 2zy,
we get (0fs/0x,0f3/0y) = (y?, xy). Therefore, we set V = {z 2°, ... 2V},
and we obtain that f is holomorphically equivalent to a function of the form
v+ xy? + gzt + - -+ ana + g(z,y), with mult(g(x,y)) > N. If all ; can be
taken zero for every N, then f is holomorphically equivalent to y> + zy?. If there
exists an a; different from zero, which is the reduced case, the form above will
allow us to calculate the local topological zeta function of f.

Now we illustrate method 2. By the Weierstrass preparation theorem, we may
work with a function of the form y3+a, (z)y*+as(x)y+az(x), with mult(a,(z)) =
1, mult(as(z)) > 3 and mult(az(x)) > 4. One can check that there exists a
coordinate transformation (x,y) — (z,y — k(z)) such that the function becomes
of the form y* + by (z)y? + b3(z), with mult(b(z)) = 1 and mult(bz(z)) > 4.
After another coordinate transformation, we get the form y3 + xy* + g(z), with
mult(g(z)) > 4.

(2.9) Theorem. We have

1 1 1.
Pgﬂ:|— ,—5{:{—5—; Z€Z>1}

and every local topological zeta function has at most one pole in | — 1, —1/2].

Proof. (a) Suppose that mult(f), the multiplicity of f at the origin of C?, is equal
to 2. Then f is holomorphically equivalent to y? + z* for some k € Z-, U {0}. If
k = 0, the only pole of Z;(s) is —1/2. If k = 2, the only pole of Z;(s) is —1. If
k is odd, write k = 2r + 1. After r blowing-ups, the strict transform of f~'{0}
is nonsingular and tangent to F,.. The numerical data of E;, ¢ = 1,...,r, are
(2i,i+1). To get the minimal embedded resolution, we now blow up twice. The
dual resolution graph and the numerical data are given below.



B B By B BB p(2)9) B, (2r,7 +1)
E2(47 3) Er+1(2r + 17 T+ 2)
E3(6, 4) Er+2 (47' + 2, 2r + 3)

If £ is even and larger than 2, write £ = 2r. Easy calculations give the following
dual resolution graph.

E1(27 2)
El E2 E3 o Er,1 E,- E2(4, 3) Er,1(27" — 2, T)
E3(6, 4) ET(QT, r—+ 1)

Because —(2r+3)/(4r+2) = —1/2—1/(2r+1) and —(r+1)/(2r) = —1/2—1/(2r),
it follows from (2.4) that

{so|3f € Oy : mult(f) =2 and Z(s) has a pole in sy}

1 1. 1

Remark that Newton polyhedra could also be used to deal with (a), see [DL1].

(b) Suppose that mult(f) = 3. Up to an affine coordinate transformation,
there are three cases for fs.

(b.1) Case f3 = zy(x +y). After one blowing-up we get an embedded resolu-
tion. The poles of Z;(s) are —1 and —2/3 = —1/2 — 1/6.

(b.2) Case f3 = y*(y + x). According to example 2.8, we may suppose that
f = v®+ 2y® + g(z), where g(x) is a holomorphic function in the variable x of
multiplicity £ > 4. If g(z) = 0, the poles of Z;(s) are —1 and —1/2. Consider
now the case that k is odd. Write k& = 2r + 1. After r blowing-ups we get an
embedded resolution with the following dual resolution graph and numerical data.

E, E E._ E, Ei(3,2) E,_1(2r—1,7)
o Bx(5,3)  E(2r+1,r+1)

If k is even, write k = 2r. After r + 1 blowing-ups we get the following picture.

by, E, E3  E._ B LB Ei(3,2) E,_1(2r—1,r)
B(5,3)  E2nr+1)
By(7,4) By (4r,2r+1)

The poles appearing in (b.2) are in the desired set because —(r +1)/(2r +1) =
—1/2—-1/(4r+2) and —(2r +1)/(4r) = —=1/2 — 1/(4r).

(b.3) Case f3 = y>. We may suppose that f is of the form

y® + agxt 4+ byya® + asa® + byt + aga® + bsya® + -,
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where a;,b; € C. If f = f3 =y then the only pole of Z;(s) is —1/3. Otherwise
there is an integer r > 1 such that after blowing up r times and always taking the
charts determined by g;(z,y) = (z,zy), we get (g1 0---0g,) dz ANdy = x"dx A dy
and fogyo---0g, = 2% (Y* +asr 410+ bor 1 YT + agp20° + Doy oy @® + ag, 437+ - ),
with as, 11,0941, 3412, b2, 12 and ag.3 not all zero. The equation of FE,. in this
chart is = 0 and the numerical data of E, are (3r,7 + 1). The zero locus of
Y3 + azp 1T + bop 1y + azpy02? + boppoyx? + asp4 32> + - - - is the strict transform
of f71{0}. Remark that it intersects only E, at this stage.

(b.3.1) If ag,11 # 0, we obtain the following after blowing up three more times.

El o Er Er+3 Er+2 Er+1
- E,(3r,r +1) B, a6 +2,2r +3)
E,1(3r+1,r+2) E,3(9r+3,3r+4)

The pole —(3r +4)/(9r + 3) is in the interval | — co, —1/2] if and only if r = 1,
and in this case the pole is equal to —1/2 — 1/12.

(b.3.ii) If ag,41 = 0 and by, 1 # 0, calculations give us the following data.
E.'1_ E,  Eryo Erpy
- E,(3r,r+1)
r(97, B, o(6r +3,2r +3
B (37 + 2,7 +2) +2(6r+3,2r43)
The pole —(2r + 3)/(6r + 3) is in the interval | — co, —1/2] if and only if r = 1,
and in this case the pole is equal to —1/2 — 1/18.

(b.3.iii) If agyy1 = b1 = 0 and a2 # 0, we get the following.
El o Er Er+2 Er+3 Er+1
o E.(3r,r +1) E,.5(6r +3,2r + 3)
E,1(3r+2,r+2) E, 39 +6,3r+5)

The pole —(3r +5)/(97 + 6) is in the interval | — oo, —1/2] if and only if r =1
and in this case the pole is equal to —1/2 — 1/30.

(b31V) The last case is A3p4+1 = b27‘+1 = A3r4+2 = 0 and (b27«+2 §£ 0 or A3r+3 7£ 0)
If 43 + by royx? + as.432> is a product of three distinct linear factors, we get
an embedded resolution after one blowing-up. The numerical data of E, ., are
(3r+3,7r+2) and —(r +2)/(3r + 3) ¢] — oo, —1/2].

If y3 + by 1 oyx? + a3, 4323 is not a product of three distinct linear factors, then it is
equal to y3 + xy? after an affine coordinate transformation that does not change
the equation © = 0 of E,. Let g,; be the blowing-up at the origin of the chart
we consider. The strict transform of f~'{0} only intersects the exceptional curve
E, 41, which has numerical data (3r+3,r+2). Because —(r+2)/(3r+3) > —1/2
for all r, it follows from (2.4) and (2.6) that Z;(s) has no pole in | — oo, —1/2]
different from —1 .



(c) Suppose that mult(f) > 4. We explained in (2.6) that Z;(s) has no
pole in | — oo, —1/2] different from —1. O

(2.10) We now present a similar result for the following generalized zeta functions
[DL1]. The case d = 2 is used in the next section. To f € O,, and d € Z-, one
associates the local topological zeta function

d d o A 1
ZJ(‘ (s) = Zt(or)nO,f(S) = Z X(Er ng™ {0}) H v + sN;
icr ier " ¢
Vi€l : d|N;

For n,d € Z~,, we set
P = {5, | 3f € O, : Z}d)(s) has a pole in sg}.
Consequently, Z;(s) = Zj(fl)(s) and P, = PLV.

(2.11) Let E; be an exceptional curve and let £}, j € J, be the components that
intersect E; in V. Then
Y N;=0 (mod Ny), (5)
j€d
see e.g. [Lo] or [Ve2]. Fix d € Z- and suppose that d | N;. Let J; C J be
the subset of indices j satisfying d | N;. Suppose that «; := v; — (v;/N;)N; is
different from 0 for all ;7 € J;. Then the contribution of E; to the residue R of
Z}d)(s) at the candidate pole —v;/N; is

X (><(EL}> > a;l) - ©)

J€Ja

This contribution is zero if J contains one or two indices. Indeed, if J contains
one element, relation (5) implies that J = J;. Therefore, the contribution R is
the same as in the case d = 1 and by (2.3) we get R = 0. If J contains two
elements, relation (5) implies that J; = J or J; = 0. If J; = J, we obtain
R = 0 analogously as in the previous case. If J; = (), we get R = 0 because the
Euler-Poincaré characteristic of a projective line minus two points is zero.

(2.12) Theorem. Let f € Oy and d € Z~,. Then

. 1 11
P oo 5= {5 ]

Proof. We use the notation and the calculations of (2.9). First we consider the
candidate pole —v;/N;, j € Ts. Because E; has numerical data (N;, 1), the

i € Zy and d|lem(2, z)} .



candidate pole —v;/N; is less than —1/2 if and only if N; = 1, and in this case
d{Nj.

(a) Suppose that mult(f) = 2. If k = 0 and d = 2, the only pole of Z\” (s)

is —1/2. If k = 0 and d > 2 and if k = 2, we obtain that Z\”(s) is identically
zero.

If k = 2r+1, we obtain from (2.11) and the consideration above about Ej, j € Tj,
that only the candidate pole associated to E,. 5 can be a pole. So we have to
compute the residue at the candidate pole —1/2 — 1/(2r + 1). If d { N,2, then
R = 0. If d|N,, d|N,;, and d|N, 2, then d = 1 and we have a contradiction. If
d|N,, d|N,;2 and d t N,y; (which is equivalent to d = 2), then the contribution
R is r/(2r 4+ 1) and this is not zero because r > 1. If d|N,;1, d|N,;2 and d { N,
then R =1/(4r 4+ 2). If d|N,42, d1 N, and d 1t N,;1, then R = —1/(4r +2). We
conclude that —1/2 — 1/(2r + 1) is a pole of Z}d)(s) if and only if d|4r + 2.

If £ = 2r, » > 2, only the candidate pole associated to E, can be a pole. If
dt N, then R = 0. If d|N, and d|N,_y, then R = (r — 1)/(2r) # 0. If d|N, and
dt N,_y, then R = —1/(2r). Consequently, —1/2 — 1/(2r) is a pole of Z}d)(s) if
and only if d|2r.

Remark that we have proved that

{so | 3f € Oy : mult(f) =2 and Z}d)(s) has a pole in so} \ {—1/2}
1 1
- {_5 i

(b) Suppose that mult(f) = 3.

(b.1) Case f3 = xy(x +y). We get that —1/2 — 1/6 is a pole if and only
if d|3 (which is equivalent to d = 3). This is consistent with the claim because
3 | lem(2,6).

(b.2) Case f3 = y*(z +y). If g(xz) = 0, then Z}d)(s) is identically zero (for
every d > 2).
If kK = 2r + 1, only the candidate pole associated to E, can be a pole. If d|N,,
then d 1 N, ; because d > 1 and because N, and N, ; are odd numbers with
difference 2. Consequently, if d|2r + 1, then R = —1/(2r +1) # 0.
If k£ = 2r, the only candidate pole which can be a pole is —v;, 11 /N, y1. If d|N;4q
and d|N,_q, then d = 1, which is a contradiction. So we have to consider two
cases. If d|N,;1, d{ N, and d 1 N,_y, then R = —1/(4r). If d|N,41, d|N, and
d{ N,_1, then R = 1/(4r). We obtain that —1/2 —1/(4r) is a pole if and only if
d|4r.

i € Z~s and d | lcm(2,i)} :

(b.3) Case f3 = y3. We get analogously that if we have a pole, it is of the
desired form. Remark that we only have to consider the case r = 1 in (b.3.i),
(b.3.ii) and (b.3.iii).



(d)
(¢) Suppose that mult(f) > 4. As before we get that Z;”(s) has no pole
less than —1/2. O

3 Surfaces

In this section, we prove the following theorem.

(3.0) Theorem We have

P3N — o0, —1[= {—1 -

1

Moreover, if f € O3 has multiplicity 3 or more, then Z;(s) has no pole less than
—1.

Remark. (i) It is a priori not obvious that the smallest value of Ps is —3/2. This
is in contrast with the fact that it easily follows from lemma 2.5 that the smallest
value of Py is —1.

(ii) In (3.3.9) we give functions f; € O; of arbitrary multiplicity such that
Z;,(s) has a pole in si, where (s;); is a sequence of real numbers larger than —1
and converging to —1. In particular P3N] — 1, —41/42[# 0, which is in contrast
to T3N]41/42, 1[= 0.

3.1 On candidate poles which are not poles

(3.1.1) Let f be the germ of a holomorphic function on a neighbourhood of the
origin 0 in C* which satisfies f(0) = 0 and which is not identically zero. Let Y
be the zero set of f. Fix an embedded resolution ¢ : X; — X, C C? for Y which
is an isomorphism outside the singular locus of Y and which is a composition
gy o -0 gy of blowing-ups ¢; : X; — X,;_; with irreducible nonsingular centre
D;_; and exceptional variety Ei(o) satisfying for : =0,...,¢ — 1:

(a) the codimension of D; in X; is at least 2;

(b) D; is a subset of the strict transform of Y under ¢; o --- 0 g;;

(c) the union of the exceptional varieties of g;0- - -og; has only normal crossings
with D;, i.e., for all P € D;, there are three surface germs through P which are
in normal crossings such that each exceptional surface germ through P is one of
them and such that the germ of D; at P is the intersection of some of them;

(d) the origin 0 of C? is an element of (g; o --- o ¢;)D;; and

(e) D; contains a point in which (g, o-++ 0 ¢;)7'Y has no normal crossings.
Remark that such a resolution always exists by Hironaka’s theorem [Hi].

(3.1.2) Fix an exceptional variety Ei(o). The strict transform E; of Ei(o) in X, is
obtained by a finite succession of blowing-ups h;, j € T, := {1,...,m},

EZ,(O) Jop) b pG=) L pG) | hmet p(me1) Ei(m) = F;

[ 7 [ [

10



with centre P;j_; € Ei(j Y and exceptional curve C](-j ). The irreducible components
of the intersection of Ei(o) with irreducible components of (g;0---0g;) 'Y different
from Ei(o) are denoted by C](-O), j € T,. The strict transform of C'](-k) in Ei(l) is
denoted (whenever this makes sense) by C](-l) and we set C; = C](-m). Remark that

h := hjo---ohy, is an embedded resolution of Ujcr, C](-O). Foreach j € T :=T,UT,

the curve Cj is an irreducible component of the intersection of F; with exactly
one other component of g~'Y. Let this component have numerical data (N, vx)
and set a; = vy, — (v;/N;) Ny

(3.1.3) Suppose that Ei(o) C (g1o---0g;) {0} and that a; # 0 for every j € T.
The contribution R of E; to the residue of Z;(s) at the candidate pole —v;/N; is

~ (Zx(éz)n%_l) , )

Jjel

where C; denotes the subset (N;c;C)) \ (UjgC;) of E;. Remark that Cy= E; \
(UjerC;). We now state some relations between the «;, which will allow us to
prove that this contribution is identically zero (i.e., zero for any value of the

alphas) for a lot of intersection configurations on Ei(o).

(3.1.4) To the creation of Ei(o) C (g10---0g;)"'{0} in the resolution process, we
associate the relation

Y di(e; —1)+3—dimD;_y =0, (8)

JETs
where d;, 1 € 1§, is the degree of the intersection cycle Ci(o) - F'on F for a general
fibre F' of gi|E(0) .

a point, we have that Ei(o) =~ P2 and that d; is just the degree of the curve C’Z.(O).
To the blowing-up h; we associate the relation

= Y. o —1)+2, (9)

kET,U{L,....j—1}

Ei(o) — D;_1 over a point of D; ;. In particular, when D;_; is

where yy, k€ T, U{1,...,j — 1}, is the multiplicity of P;_; on C’,Ej_l). See [Vel]
for more general statements in arbitrary dimension and proofs.

(3.1.5) Now we proceed in the same way as in [Ve3] for Igusa’s p-adic zeta
function. One easily verifies that the number (7) does not change when we do an

extra blowing-up h,,,1 at a point P,, € Ei(m) and associate to the new exceptional
curve a number « using (9). Because of this observation, one can compute R if
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one has the curves C’J(-O), j € Ty, on Ei(o) together with the associated values o;

as follows. Compute the minimal embedded resolution of Ujcr, C](-O) and compute

the alpha associated to an exceptional curve using (9). By putting these data in
(7), we get R.

(3.1.6) Example. Suppose that EZ-(O) is the exceptional variety of a blowing-

0 .
i( ) consists

up at a point and suppose that the intersection configuration on E
of three projective lines C](-O), j € Ty := {a,b,c}, all passing through the same
point P. Suppose that o; # 0 for all j € T. The minimal embedded resolution
[ W — Ei(o) is the blowing-up at P. By abuse of notation, we denote the

exceptional curve by ' and the strict transform of C](-O), j €Ty, by Cj.

Cl l

c, |, |C. o

By relations (8) and (9) we have o, +ap+a, =0and a1 = ag+ap+a.—1=—1
resgectively. Now we can calculate the contribution R of the strict transform of
EZ-(O in X; to the residue of Z(s) at the candidate pole —v;/NN;:

1 ° 1
R = N, (ZX(CI)H%_ )

cr jer

1 1 1 1 1 1 1 1
= —(-1-—+—+—+—+ + +
31 Qg Qp G 10, Q10 Q10

= 0.

We stress that R is zero for any possible value of a4, a; and ..

3.2 Multiplicity 2

(3.2.1) Let f be the germ of a holomorphic function on a neighbourhood of the
origin 0 in C* which satisfies f(0) = 0, and let F" be the germ of the holomorphic
function f+ 2, on a neighbourhood of the origin 0 in C"*!'. Then the following
equality is obtained in [ACLM], see also the Thom-Sebastiani principle in [DL3]:

1 S(28+3) 1 3s (2) 1
Zp(s) = Z = A =
PO = Tt G D@ 1) f<5+2> s+t U2

(3.2.2) Proposition. The set
{so | 3f € O3 : mult(f) =2 and Z;(s) has a pole in sy} N |—o0, —1]

12



is equal to

1
1

Proof. Let f be an element of O3 with multiplicity 2. Up to an affine coordinate
transformation, the part of degree two in the Taylor series of f is equal to 2,
2?2 + y? or 22 + y? + 2%, Using (2.7), we may suppose that f is of the form
72 + g(y,2) with g(y,z) € O,. The formula in (3.2.1) and the result for curves
imply that every pole of Z;(s) less than —1 is of the form —1 —1/i, i € Z;.
For the other inclusion, we remark that the poles of the local topological zeta
function associated to x2 4+ y? + 2%, i > 2, are —1 — 1/i and —1. O

(3.2.3) Our next goal is to give a sequence of poles larger than —1 and converging
to —1. Keeping in mind the formula in (3.2.1), we try to find functions f; € O,
such that Zy, (s) has a pole in si, where (s;) is a sequence of real numbers larger
than —1/2 and converging to —1/2. Set f, = 23y? + 2 for k > 5.

We obtain the following equalities after some calculations:

Zh (s) 35 +2rs+8s+2r+3 ® (g 1

: S) = ) s) = )

farta (4rs+8s+2r +3)(3s +1)(s + 1) Jarsa drs +8s+2r+3
382 —rs—2s—r—1 (2)

(s) =0.

7 —
forss () (2rs+3s+r+1)3s+1)(s+1)’ Far+s

Now we use the formula in (3.2.1) to calculate the local topological zeta function
of F}, := f + 2%. We obtain for even and odd k that

(6k — 6)s% + (15k — 5)s + 10k — 5
(6s+5)(s 4+ 1)(2ks + 2k — 1)

ZFk(S) =

Finally, we make the substitution s = —(2k — 1)/(2k) in the numerator in order
to check that this value, which converges to —1 if £ goes to infinity, is a pole. We

obtain
(k—1)(k—3)(2k—1)

2k2
This value never becomes zero because k > 5. Consequently, —(2k — 1)/(2k) is
always a pole of Zp, (s).

Remark. In particular we obtain that PsN] — 1, —41/42[# (), which is in contrast
to T3N|41/42, 1[= 0.

3.3 Multiplicity larger than 2

(3.3.1) Let f be the germ of a holomorphic function on a neighbourhood of the
origin 0 in C* which satisfies f(0) = 0 and which is not identically zero. Let Y be
the zero set of f. Fix an embedded resolution ¢ for Y which is a composition of

13



blowing-ups g;; : X; — X with irreducible nonsingular centre D; and exceptional
surface E; as in (3.1.1). Denote the irreducible components of Y by E;, i € Ty.
The strict transform of a variety E; by a succession of blowing-ups will be denoted
in the same way. The numerical data of E; are (N;,v;).

(3.3.2) The following table gives the numerical data of E;. In the columns, the
dimension of D; is kept fixed. In the rows, the number of exceptional surfaces
through Dj is kept fixed. So Ej, E; and E,, represent exceptional surfaces that
contain D;. The multiplicity of D; on the strict transform of Y is denoted by pp, .

Dj is a point P Dj is a curve L
/ (:U’PJS) (IJ’L72)
Ek (Nk+/LP,Vk+2) (Nk+NL;Vk+1)
Ek and El (Nk;+Nl+,uP7Vk;+Vl+]-) (Nk+Nl+ML,Vk+Vl)
Ey, Eyand E,, | (Ng + N+ Ny + fip, Vi + v + V) /

(3.3.3) Lemma. Suppose that mult(f) > 3. If there is no exceptional surface
through D;, then —v;/N; > —1.

Proof. The case that the centre D; is a point P through which no exceptional
surface passes can only occur in the first blowing-up because of condition (d)
in (3.1.1) and because the inverse image of 0 in X is contained in the union
of the exceptional surfaces in X;. Since mult(f) > 3, we have in this case
—v;/N; = =3/pp = —3/mult(f) > —1.

If the centre D; is a curve L contained in no exceptional surface, then p; > 2
because our embedded resolution is an isomorphism outside the singular locus of
Y. Consequently, we get in this case —v;/N; = =2/ > —1. O

(3.3.4) Suppose that D, is contained in at least one exceptional surface and
that the candidate poles associated to the exceptional surfaces that pass through
D;j are larger than or equal to —1. Then the table in (3.3.2) implies that also
—v;/N; > —1, unless D; is a nonsingular point P of the strict transform of
Y through which only one exceptional surface Ej passes and —vy/Ny = —1.
Suppose that we are in this situation. Denote the unique irreducible component
of the strict transform of Y which passes through P by E,. Consider now a
small enough neighbourhood Z, of P on which FE, is nonsingular such that, if
we restrict the blowing-ups g¢;; to the inverse image of Zj, we get an embedded
resolution h = hy o --- o hy for the germ of £, U E at P which is a composition
of blowing-ups h; : Z; — Z;_1, 1 € {1,..., s}, with irreducible nonsingular centre
D!, := D;_; N Z;_; and exceptional surface E] := E; N Z; satistying for i =
0,...,s—1:

(a) the codimension of D} in Z; is at least 2;

(b) D} is a subset of E! := E, N Z;

14
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(c) Uiefo,1,...ip ] has only normal crossings with D}, where Ej := Ey N Z;
(d) the image of D} under hy o --- o h; contains P; and
(e) if D; = Dj, then D; contains a point where there are no normal crossings.

Remark that it can happen that g;; is an isomorphism on the inverse image of
Zy. Because we did not specify the indices in (3.3.1), we were able to get a nice
notation here. Remark also that D; = D if D, is a point. From now on, we
study the resolution h : Z; — Zj for the germ of £, U E, at P.

(3.3.5) Lemma. If D; = D), then D; is a subset of E|.

Proof. Remark that D; has to lie in an exceptional surface because E! is nonsin-
gular and because an embedded resolution is an isomorphism outside the singular
locus of Y.

First we consider the case that D; = D] is a point contained in exceptional
surfaces different from E|| and in the surface E!. The union of these surfaces has
normal crossings at D; because E!, considered as a subset of Zj, is nonsingular.
This is in contradiction with (e). Remark that it can thus not happen that E!
and three exceptional surfaces different from Ej have a point in common.

The case that D; = D] is a curve contained in exactly two exceptional surfaces
different from Ej and in the surface E/, cannot occur because E! is a nonsingular
subset of Z, and therefore these three surfaces should have normal crossings.

Finally we study the case that D; = D) is a curve contained in one exceptional
surface E} different from Ej and in Ej. Condition (c) implies that every point of
D; is contained in at most one exceptional surface different from E; Moreover,
such an exceptional surface has to be transversal to D;. This implies that there
are normal crossings at every point of D;, which is in contradiction with (e).
Therefore, this case cannot occur. O

(3.3.6) Lemma. Suppose that mult(f) > 3. Then we have v; < N;+1 for every
exceptional surface E;, i € {1,...,s}. Moreover, v; = N; + 1 if and only if D; 4
is a point and the numerical data of every exceptional surface E; different from
Ey and through D;_, satisfy v; = N; + 1.

Proof. The proof is by induction on . Since vy = Ny, we have that v = N; + 1.
Suppose now that v; < N; + 1 for every exceptional surface E; through D; ;.

Case 1: D;_; is a point. We obtain from (3.3.5) that D;_; is a subset of Ej.
Because vy = Ny and because every other exceptional surface E; through D;_;
satisfies v; < N, + 1, the table of (3.3.2) gives us that v; < N; + 1.

Case 2: D;_y isa curve. If D; | # D!_, then D!_| ¢ (hyo---0oh; 1)"'P and
therefore we get as in the beginning of (3.3.4) that —v;/N; > —-1. If D,y = D|_,
one computes from (3.3.2) and the previous lemma that —v;/N; > —1.

We have now proved the first part of the lemma. Using this first part and the
table of (3.3.2), we get the second part. O
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(3.3.7) Lemma. If mult(f) > 3 and if the numerical data of E; satisty v; =
N; + 1, then —v;/N; # —v;/N; for every exceptional surface E; that intersects
E; at some stage of the resolution process.

Proof. Let E; be an exceptional surface that intersects E; at some stage of the
resolution process. If E; is created before E;, then F; contains the point D; ;.
Otherwise, £} is created by a blowing-up at a point of E; or by a blowing-up
along a curve.

If E; is created by a blowing-up along a curve, then —v;/N; > —1, and
consequently —v;/N; # —v;/N;. Now we consider the case that E; contains
the point D;_;. There is no problem if v; < N;. Consequently, suppose that
v; = Nj + 1. From the table in (3.3.2), we get N; < N;. Therefore, —v;/N; =
—(N; +1)/N; > —=(N; + 1)/N; = —vj/N;. The case that E; is created by a
blowing-up at a point of E; is treated analogously. O

(3.3.8) Proposition. If mult(f) > 3, then no pole of Z(s) is less than —1.

Proof. Suppose that mult(f) > 3.

We have only to consider exceptional surfaces with a candidate pole less than
—1. Recall from (3.3.6) that —v;/N; < —1 if and only if D; ; is a point and all
exceptional surfaces through the point D; ; different from Ej have a candidate
pole less than —1. We will determine all possible intersection configurations on
such surfaces just after their creation.

If —v;/N; > —1 and —v;41/Niy1 < —1, then the blowing-ups along D;_; and
D; commute with each other. Therefore, we may assume that there is a k (larger
than zero because —v;/N; < —1) such that —v;/N; < —1 for 1 < i < k and
_Vz/Nz > —1fork<i<s.

The intersection configuration on E; consists of one projective line, which
is the intersection with Ey, and E,. The points of Z; in which we do not have
normal crossings and which lie above P are those on this projective line. This
implies the following statement for ¢ = 2.

If Q is a point of Z; 1,7 € {2,...,k}, in which we do not have normal
crossings and which lies above P (so consequently () is a point of Ej, of (%)
one or two other exceptional surfaces and of E,), then there exists an
exceptional surface E; through ) with the property EyNE, = E,NE;.

We prove this statement by induction on ¢. Suppose that it is true for i = 5 €
{2,...,k — 1}. We give the proof for i = j 4+ 1. The statement follows from the
induction hypothesis for points not on £j;, because a blowing-up is an isomor-
phism outside the exceptional surface. So we prove it for points on E;. By the
induction hypothesis applied to the point D;_;, we obtain that there exists an
exceptional surface E; through D; , such that By N E, = E, N E; in Z; ;. But
then F,NE; = EyNE; in Z;, which solves the problem for the point EyNE;NE;.
There are other points on Ej; in which we do not have normal crossings if and
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only if £, is tangent to Ey in D;_;. In this case, the points in which we do not
have normal crossings are the points of £y N E;. Because £y N E; = E, N E;, we
are done.

Because the centre of a blowing-up satisfies the conditions of the statement,
we obtain that the possible intersection configurations are the following configu-
rations of lines in P?:

For all these configurations, we can calculate as in (3.1.6) that the contribution
to the residue is 0. The second author did this already in [Ve3] for Igusa’s p-adic
zeta function. The point is that (x) excludes the configuration consisting of four
lines in general position, for which this contribution is not zero. Remark also that
we need here that the alphas are not zero, a fact we proved in (3.3.7). O

(3.3.9) In (3.2.3), we found functions fj, € O; of multiplicity 2 such that Z, (s)
has a pole in sg, where (si); is a sequence of real numbers larger than —1 and
converging to —1. Here we construct for every n > 0 functions f;, € Os of
multiplicity n + 2 with this property. We use the formula obtained by Denef and
Loeser in [DL1, Théoreme 5.3|, which expresses the local topological zeta function
of a non-degenerated polynomial in terms of its Newton polyhedron. Fix n > 0
and set fy = 2"2% + 23t"y? + 2% for k > n + 4. Then

(—2n* — 6n)s® + (n* + 3kn — 4n + 6k — 6)s*
+(—4n? + 4kn — Tn + 15k — 5)s — 10n + 10k — 5
(65 +2ns+5)(s+1)(2ks + 2k —2n — 1)(ns + 1)

Zf, (5) =

Consequently, —(2k — 2n — 1)/(2k) is a pole if and only if it is not a zero of
the numerator. So we make the substitution s = —(2k — 2n — 1)/(2k) in the
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numerator and obtain

(k—1—=2n)(k —n —3)(2k — 2n — 1)(2n2 — 2kn + n + 2k)
43

Because k > n + 4, this is zero if and only if £ = 1+ 2n. Thus we have found for
any multiplicity larger than one a sequence with the desired property.

4 Other zeta functions

(4.1) Denef and Loeser associate in [DL2] to a polynomial its motivic zeta func-
tion, which is a much finer invariant than its topological zeta function. Instead of
the usual topological Euler-Poincaré characteristic, it involves the so-called uni-
versal Euler characteristic of an algebraic variety, i.e., its class in the Grothendieck
ring.

We recall this notion. The Grothendieck ring K,(Varc) of complex algebraic
varieties is the free abelian group generated by the symbols [V], where V' is a
variety, subject to the relations [V] = [V'], if V' is isomorphic to V', and [V] =
[VAW]+[W], if W is closed in V. Its ring structure is given by [V]-[W] := [V xW].
We set L := [Al] and denote by M the localization of Ky(Varc) with respect to
L.

(4.2) In [DL2] the motivic zeta function is more generally defined for a regular
function f on a smooth algebraic variety X, with respect to a subvariety W of
X; we refer to [DL2, section 2| for this definition. One easily verifies that the
construction is still valid for a germ f of a holomorphic function at 0 € C* when
W = {0}; we denote this (local) motivic zeta function by Znoet0,7(s). Then, with
the notation of (1.1), the formula of [DL2, Theorem 2.2.1] yields that

n ° _ L-1
Zmorog(5) =L > _[Er g HON ] [ o

ICT el

Here L™ should be considered as a variable, and this expression lives in a local-
ization of the polynomial ring ML *].

(4.3) The motivic zeta function Zye0,7(s) specializes to Ziop,r(s) [DL2, sub-
section 2.3|, but also to various ‘intermediate level’ zeta functions. An important
one uses Hodge polynomials. Recall that the Hodge polynomial of a complex
algebraic variety V' is

H(V)=H(V,u,0) = (Z(—l)ih”’q (Hi(V, C))> uPv? € Zlu,v),

P,q 120

18



where h?? (HI(V,C)) is the rank of the (p, ¢)-Hodge component of the i-th coho-
mology group with compact support of V. The zeta function of f on this level

1S
n ° _ uv — 1
Znoao.s(5) = (wo) ™" y_ H <EI Ny 1{0}> I oy
ICcT el

here (uv)~° is a variable, and this zeta function lives e.g. in the field of rational
functions in (uv)~* over Q(u, v).

(4.4) As in [RV] we define the poles of Zyoa,0,7(s) to be the real numbers s such
that (uv)~* is a pole of Zyea,,r(s), considered as rational function in (uv)~*.
Then we have the following.

Theorems 2.9 and 3.0 are still valid with Z(s) = Zipo,7(s) replaced by
Zioap,f(s) and P, = {so | 3f € Oy : Znoayp,f(s) has a pole in so}. The proofs
are the same as before; they essentially just use the ‘geometry’ of a resolution.

A good definition of poles of Zyo10,7(s) is not immediately clear, due to the
fact that M could have zero divisors (at present this is an open question). Using
the definition of [RV] for real poles, Theorems 2.9 and 3.0 are also valid for

Zmot,[],f(s)-
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