
On the smallest poles of topologi
al zetafun
tionsDirk Segers Willem VeysO
tober 10, 2002Abstra
tWe study the lo
al topologi
al zeta fun
tion asso
iated to a 
omplexfun
tion that is holomorphi
 at the origin of C 2 (respe
tively C 3 ). Wedetermine all possible poles less than �1=2 (respe
tively �1). On C 2 ourresult is a generalization of the fa
t that the log 
anoni
al threshold isnever in ℄5=6; 1[. Similar statements are true for the motivi
 zeta fun
tion.1 Introdu
tion(1.1) Let f be the germ of a holomorphi
 fun
tion on a neighbourhood of theorigin 0 in C n whi
h satis�es f(0) = 0 and whi
h is not identi
ally zero. Letg : V ! U � C n be an embedded resolution of a representative of f�1f0g. Wedenote by Ei, i 2 T , the irredu
ible 
omponents of g�1(f�1f0g), and by Ni and�i � 1 the multipli
ities of f Æ g and g�(dx1 ^ � � � ^ dxn) along Ei. The (Ni; �i),i 2 T , are 
alled the numeri
al data of the resolution (V; g). For I � T denotealso EI := \i2IEi and ÆEI := EI n ([j =2IEj).The set of germs of holomorphi
 fun
tions on a neighbourhood of 0 2 C n willbe denoted by On.(1.2) To f one asso
iates the lo
al topologi
al zeta fun
tionZf(s) = Ztop;0;f(s) :=XI�T �( ÆEI \g�1f0g)Yi2I 1�i + sNi :Here s is a 
omplex variable and �(�) denotes the topologi
al Euler-Poin
ar�e
hara
teristi
. The remarkable fa
t that Zf(s) does not depend on the 
hosenresolution was �rst proved in [DL1℄ by expressing it as a limit of Igusa's p-adi
zeta fun
tions.2000 Mathemati
s Subje
t Classi�
ation. Primary 14B05 14J17 32S05; Se
ondary 14E1514H20 1



(1.3) The log 
anoni
al threshold 
0(f) of f at 0 2 C n is by de�nitionsupf
 2 Q j the pair (C n ; 
 div f) is log 
anoni
al in a neighbourhood of 0g:We 
an des
ribe it (see [Ko2, Prop 8.5℄) in terms of the embedded resolution(V; g) as 
0(f) = minf�i=Ni j i 2 Tg. In parti
ular, this minimum is independentof the 
hosen resolution. Consequently, �
0(f) is the largest 
andidate pole ofZf(s). The log 
anoni
al threshold has already been studied in various papers ofAlexeev, Ein, Koll�ar, Kuwata, Mustat��a, Prokhorov, Reid, Shokurov and others;espe
ially the sets Tn := f
0(f) j f 2 Ong;with n 2 Z>0, are the subje
t of interesting 
onje
tures.It is natural to investigate whether more quotients ��i=Ni, i 2 T , yield invari-ants of the germ of f at 0. Of 
ourse, the whole set f��i=Ni j i 2 Tg depends onthe 
hosen resolution (for n=2 however one 
ould 
onsider su
h a set asso
iatedto the minimal resolution); but its subset 
onsisting of the poles of Zf(s) is an in-variant of f . Philosophi
ally, these poles are indu
ed by `important' 
omponentsEi, whi
h o

ur in every resolution. For n 2 Z>0, we de�ne the set Pn byPn := fs0 j 9f 2 On : Zf(s) has a pole in s0g:The 
ase n = 1 is trivial: T1 = f1=i j i 2 Z>0g and P1 = f�1=i j i 2 Z>0g.(1.4) When n = 2, it is known that T2\℄5=6; 1[= ; (see [Ku1℄ or [Re℄). Be
auseit follows from [Ve4℄ that �
0(f) is a pole (and thus the largest pole) of Zf(s),the statement P2\℄� 1;�5=6[= ; would be a remarkable generalization. It is infa
t not hard to prove this generalization. In this arti
le, we will prove more:P2\℄�1;�1=2[ = f�1=2� 1=i j i 2 Z>1g (1)= f�1;�5=6;�3=4;�7=10; : : :g:(1.5) Koll�ar proved in [Ko1℄ that T3\℄41=42; 1[= ;. It turns out that there is noanalogous result for P3. A
tually, we will give examples of zeta fun
tions withpoles in ℄� 1;�41=42[ whi
h are moreover arbitrarily near to �1. On the otherhand, we prove the analogue of (1), whi
h appears to beP3\℄�1;�1[ = f�1� 1=i j i 2 Z>1g: (2)In general, we expe
t that Pn\℄�1;�(n� 1)=2[= f�(n� 1)=2� 1=i j i 2 Z>1g.Remark. One 
an easily show that Pn\℄�1;�n+ 1[= ; if n � 2.
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2 Curves(2.1) We will determine P2\℄ �1;�1=2[. Let f be the germ of a holomorphi
fun
tion on a neighbourhood of the origin 0 in C 2 whi
h satis�es f(0) = 0 andwhi
h is not identi
ally zero. Let (V; g) be the minimal embedded resolution off�1f0g. Write g = g1 Æ � � � Æ gt as a 
omposition of blowing-ups gi, i 2 Te :=f1; : : : ; tg. The ex
eptional 
urve of gi and also the stri
t transforms of this
urve are denoted by Ei. The irredu
ible 
omponents of f�1f0g and their stri
ttransforms are denoted by Ej, j 2 Ts.(2.2) The dual (minimal) embedded resolution graph of f�1f0g is obtained asfollows. One asso
iates a vertex to ea
h ex
eptional 
urve in the minimal embed-ded resolution (represented by a dot), and to ea
h bran
h of the stri
t transformof f�1f0g (represented by a 
ir
le). One also asso
iates to ea
h interse
tion anedge, 
onne
ting the 
orresponding verti
es. The fa
t that Ei has numeri
al data(Ni; �i) is denoted by Ei(Ni; �i).(2.3) Let Ei be an ex
eptional 
urve and let Ej, j 2 J , be the 
omponents thatinterse
t Ei in V . Set �j = �j � (�i=Ni)Nj for j 2 J . Then we have the relationXj2J (�j � 1) + 2 = 0; (3)whi
h was �rst proved by Loeser in [Lo℄, and later more 
on
eptually by these
ond author in [Ve1℄.Suppose that �j 6= 0, whi
h is equivalent to ��i=Ni 6= ��j=Nj, for all j 2 J .Then the 
ontribution of Ei to the residue R of Zf(s) at the 
andidate pole��i=Ni is 1Ni  �( ÆEfig) +Xj2J ��1j ! : (4)From (3) and (4) it follows that R = 0 if J 
ontains one or two elements. Thisis the easy part of the following theorem. The other part is more diÆ
ult and isproved in [Ve4℄.(2.4) Theorem. We have that s0 is a pole of Zf(s) if and only if s0 = ��i=Ni forsome ex
eptional 
urve Ei interse
ting at least three times other 
omponents, ors0 = �1=Nj for some irredu
ible 
omponent Ej of the stri
t transform of f�1f0g.The following lemma is obtained by elementary 
al
ulations.(2.5) Lemma. Suppose that we have blown up k times but we have not yet anembedded resolution. Let P be a point of the stri
t transform of f�1f0g with3



multipli
ity � in whi
h we do not have normal 
rossings yet. Let gk+1 be theblowing-up at P .(a) Suppose that two ex
eptional 
urves Ei and Ej 
ontain P . Then thenew 
andidate pole ��k+1=Nk+1 = �(�i + �j)=(Ni + Nj + �) is larger thanminf��i=Ni;��j=Njg.(b) Suppose that exa
tly one ex
eptional 
urve Ei 
ontains P and that � � 2.Then Ek+1 has numeri
al data (Ni+�; �i+1) and �(�i+1)=(Ni+�) is in between�1=� and ��i=Ni.(
) Suppose that exa
tly one ex
eptional 
urve Ei 
ontains P and that � = 1.Remark that the two 
urves are tangent at P be
ause we do not have normal
rossings at P . Let gk+2 be the blowing-up at Ei \ Ek+1. Be
ause the stri
ttransform of f�1f0g does not interse
t Ek+1 after this blowing-up, we do nothave to blow up at a point of Ek+1 anymore. Be
ause Ek+1 is interse
ted on
e, itfollows from (2.3) that the 
ontribution of Ek+1 to the residue at the 
andidatepole ��k+1=Nk+1 is zero. The numeri
al data of Ek+2 are (2Ni + 2; 2�i + 1), and�(2�i + 1)=(2Ni + 2) is in between �1=2 and ��i=Ni.(2.6) Suppose that after some blowing-ups, we do not have normal 
rossings ata point P . Suppose also that the 
andidate poles asso
iated to the ex
eptional
urves through P are all larger than or equal to �1=2. Then it follows from theabove lemma that the 
omponents above P in the �nal resolution do not give a
ontribution to a pole less than �1=2.Corollary. Zeta fun
tions of singularities of multipli
ity at least 4 do not havea pole in ℄�1;�1=2[nf�1g.Indeed, every ex
eptional 
urve in the minimal resolution of f�1f0g lies above apoint of E1 (
onsidered in the stage when it is 
reated), whi
h has a 
andidatepole larger than or equal to �1=2.(2.7) To deal with multipli
ity 2 and 3, we will study an `easier' element ofO2 with the same zeta fun
tion. We mention two methods to obtain a simplefun
tion with this property.Method 1. (See [Ku2℄) Let f 2 On have multipli
ity d and let fd be the homo-geneous part of degree d in the Taylor series of f . Let N 2 Z>d. Take a maximalset V of homogeneous polynomials of degree larger than d and at most N whi
hare linearly independent in the quotient ve
tor spa
e On=(�fd=�x1; : : : ; �fd=�xn).Then f is holomorphi
ally equivalent to fd+Pui2V aiui+', for some ai 2 C andsome ' 2 On whi
h satis�es mult(') > N .Remark. (i) The similar statement in [Ku2, Lemma 3.2℄ is not 
orre
t; somehomogeneity 
ondition is needed.(ii) Let f�1f0g have an isolated singularity at the origin and suppose that wehave an embedded resolution whi
h is an isomorphism outside this singularity.4



Then ' does not in
uen
e the embedded resolution and the numeri
al data ifN is big enough. Consequently, to 
al
ulate the lo
al topologi
al zeta fun
tion,we 
an omit ' if we take N big enough. Note that when n = 2, f�1f0g has anisolated singularity at 0 if and only if f is redu
ed and mult(f) � 2.Method 2. (Weierstrass Preparation Theorem) If f(z1; : : : ; zn�1; w) = f(z; w) 2On is not identi
ally zero on the w-axis, then f 
an be written uniquely asf = (we + a1(z)we�1 + � � �+ ae(z))h, where ai(z) 2 On�1 satis�es ai(0) = 0 andh 2 On satis�es h(0) 6= 0.Be
ause h(0) 6= 0, the resolutions and the lo
al topologi
al zeta fun
tions of fand we + a1(z)we�1 + � � � + ae(z) are the same. After an appropriate 
oordi-nate transformation, the desired form will appear. For example, the 
oordinatetransformation (z; w) 7! (z; w � a1(z)=e) 
an
els the term a1(z)we�1.(2.8) Example. Let f 2 O2 have multipli
ity 3 and let f3 = y3+xy2 = y2(y+x).First we illustrate method 1. Be
ause �f3=�x = y2 and �f3=�y = 3y2 + 2xy,we get (�f3=�x; �f3=�y) = (y2; xy). Therefore, we set V = fx4; x5; : : : ; xNg,and we obtain that f is holomorphi
ally equivalent to a fun
tion of the formy3 + xy2 + a4x4 + � � �+ aNxN + g(x; y), with mult(g(x; y)) > N . If all ai 
an betaken zero for every N , then f is holomorphi
ally equivalent to y3+xy2. If thereexists an ai di�erent from zero, whi
h is the redu
ed 
ase, the form above willallow us to 
al
ulate the lo
al topologi
al zeta fun
tion of f .Now we illustrate method 2. By the Weierstrass preparation theorem, we maywork with a fun
tion of the form y3+a1(x)y2+a2(x)y+a3(x), with mult(a1(x)) =1, mult(a2(x)) � 3 and mult(a3(x)) � 4. One 
an 
he
k that there exists a
oordinate transformation (x; y) 7! (x; y � k(x)) su
h that the fun
tion be
omesof the form y3 + b1(x)y2 + b3(x), with mult(b1(x)) = 1 and mult(b3(x)) � 4.After another 
oordinate transformation, we get the form y3 + xy2 + g(x), withmult(g(x)) � 4.(2.9) Theorem. We haveP2 \ ��1;�12� = ��12 � 1i ���� i 2 Z>1�and every lo
al topologi
al zeta fun
tion has at most one pole in ℄� 1;�1=2℄.Proof. (a) Suppose that mult(f), the multipli
ity of f at the origin of C 2 , is equalto 2. Then f is holomorphi
ally equivalent to y2 + xk for some k 2 Z>1 [ f0g. Ifk = 0, the only pole of Zf(s) is �1=2. If k = 2, the only pole of Zf(s) is �1. Ifk is odd, write k = 2r + 1. After r blowing-ups, the stri
t transform of f�1f0gis nonsingular and tangent to Er. The numeri
al data of Ei, i = 1; : : : ; r, are(2i; i+ 1). To get the minimal embedded resolution, we now blow up twi
e. Thedual resolution graph and the numeri
al data are given below.5



: : :s s s s s s
E1 E2 E3 Er Er+2 Er+1 E1(2; 2)E2(4; 3)E3(6; 4) Er(2r; r + 1)Er+1(2r + 1; r + 2)Er+2(4r + 2; 2r + 3)If k is even and larger than 2, write k = 2r. Easy 
al
ulations give the followingdual resolution graph.: : :s s s s s���HHH 

E1 E2 E3 Er�1 Er E1(2; 2)E2(4; 3)E3(6; 4) Er�1(2r � 2; r)Er(2r; r + 1)Be
ause �(2r+3)=(4r+2) = �1=2�1=(2r+1) and�(r+1)=(2r) = �1=2�1=(2r),it follows from (2.4) thatfs0 j 9f 2 O2 : mult(f) = 2 and Zf(s) has a pole in s0g= ��12 � 1i ���� i 2 Z>1� [ ��12� :Remark that Newton polyhedra 
ould also be used to deal with (a), see [DL1℄.(b) Suppose that mult(f) = 3. Up to an aÆne 
oordinate transformation,there are three 
ases for f3.(b.1) Case f3 = xy(x+ y). After one blowing-up we get an embedded resolu-tion. The poles of Zf(s) are �1 and �2=3 = �1=2� 1=6.(b.2) Case f3 = y2(y + x). A

ording to example 2.8, we may suppose thatf = y3 + xy2 + g(x), where g(x) is a holomorphi
 fun
tion in the variable x ofmultipli
ity k � 4. If g(x) = 0, the poles of Zf (s) are �1 and �1=2. Considernow the 
ase that k is odd. Write k = 2r + 1. After r blowing-ups we get anembedded resolution with the following dual resolution graph and numeri
al data.: : :
 s s s s���HHH 

E1 E2 Er�1 Er E1(3; 2)E2(5; 3) Er�1(2r � 1; r)Er(2r + 1; r + 1)If k is even, write k = 2r. After r + 1 blowing-ups we get the following pi
ture.: : :s s s s s s
 
E1 E2 E3 Er�1 Er+1 Er E1(3; 2)E2(5; 3)E3(7; 4) Er�1(2r � 1; r)Er(2r; r + 1)Er+1(4r; 2r + 1)The poles appearing in (b.2) are in the desired set be
ause �(r + 1)=(2r + 1) =�1=2� 1=(4r + 2) and �(2r + 1)=(4r) = �1=2� 1=(4r).(b.3) Case f3 = y3. We may suppose that f is of the formy3 + a4x4 + b3yx3 + a5x5 + b4yx4 + a6x6 + b5yx5 + � � � ;6



where ai; bi 2 C . If f = f3 = y3 then the only pole of Zf(s) is �1=3. Otherwisethere is an integer r � 1 su
h that after blowing up r times and always taking the
harts determined by gi(x; y) = (x; xy), we get (g1 Æ � � � Æ gr)�dx^ dy = xrdx^ dyand f Æg1Æ� � �Ægr = x3r(y3+a3r+1x+b2r+1yx+a3r+2x2+b2r+2yx2+a3r+3x3+ � � �),with a3r+1; b2r+1; a3r+2; b2r+2 and a3r+3 not all zero. The equation of Er in this
hart is x = 0 and the numeri
al data of Er are (3r; r + 1). The zero lo
us ofy3 + a3r+1x+ b2r+1yx+ a3r+2x2 + b2r+2yx2 + a3r+3x3 + � � � is the stri
t transformof f�1f0g. Remark that it interse
ts only Er at this stage.(b.3.i) If a3r+1 6= 0, we obtain the following after blowing up three more times.: : :s s s s s
E1 Er Er+3 Er+2 Er+1 Er(3r; r + 1)Er+1(3r + 1; r + 2) Er+2(6r + 2; 2r + 3)Er+3(9r + 3; 3r + 4)The pole �(3r + 4)=(9r + 3) is in the interval ℄�1;�1=2℄ if and only if r = 1,and in this 
ase the pole is equal to �1=2� 1=12.(b.3.ii) If a3r+1 = 0 and b2r+1 6= 0, 
al
ulations give us the following data.: : :s s s s
 
E1 Er Er+2 Er+1 Er(3r; r + 1)Er+1(3r + 2; r + 2) Er+2(6r + 3; 2r + 3)The pole �(2r + 3)=(6r + 3) is in the interval ℄�1;�1=2℄ if and only if r = 1,and in this 
ase the pole is equal to �1=2� 1=18.(b.3.iii) If a3r+1 = b2r+1 = 0 and a3r+2 6= 0, we get the following.: : :s s s s s
E1 Er Er+2 Er+3 Er+1 Er(3r; r + 1)Er+1(3r + 2; r + 2) Er+2(6r + 3; 2r + 3)Er+3(9r + 6; 3r + 5)The pole �(3r + 5)=(9r + 6) is in the interval ℄ �1;�1=2℄ if and only if r = 1and in this 
ase the pole is equal to �1=2� 1=30.(b.3.iv) The last 
ase is a3r+1 = b2r+1 = a3r+2 = 0 and (b2r+2 6= 0 or a3r+3 6= 0).If y3 + b2r+2yx2 + a3r+3x3 is a produ
t of three distin
t linear fa
tors, we getan embedded resolution after one blowing-up. The numeri
al data of Er+1 are(3r + 3; r + 2) and �(r + 2)=(3r + 3) =2℄�1;�1=2[.If y3+b2r+2yx2+a3r+3x3 is not a produ
t of three distin
t linear fa
tors, then it isequal to y3 + xy2 after an aÆne 
oordinate transformation that does not 
hangethe equation x = 0 of Er. Let gr+1 be the blowing-up at the origin of the 
hartwe 
onsider. The stri
t transform of f�1f0g only interse
ts the ex
eptional 
urveEr+1, whi
h has numeri
al data (3r+3; r+2). Be
ause �(r+2)=(3r+3) � �1=2for all r, it follows from (2.4) and (2.6) that Zf(s) has no pole in ℄ �1;�1=2[di�erent from �1 . 7



(
) Suppose that mult(f) � 4. We explained in (2.6) that Zf(s) has nopole in ℄�1;�1=2[ di�erent from �1. �(2.10)We now present a similar result for the following generalized zeta fun
tions[DL1℄. The 
ase d = 2 is used in the next se
tion. To f 2 On and d 2 Z>0 oneasso
iates the lo
al topologi
al zeta fun
tionZ(d)f (s) = Z(d)top;0;f(s) := XI�T8i2I : djNi �( ÆEI \g�1f0g)Yi2I 1�i + sNi :For n; d 2 Z>0, we setP(d)n := fs0 j 9f 2 On : Z(d)f (s) has a pole in s0g:Consequently, Zf(s) = Z(1)f (s) and Pn = P(1)n .(2.11) Let Ei be an ex
eptional 
urve and let Ej, j 2 J , be the 
omponents thatinterse
t Ei in V . Then Xj2J Nj � 0 (mod Ni); (5)see e.g. [Lo℄ or [Ve2℄. Fix d 2 Z>0 and suppose that d j Ni. Let Jd � J bethe subset of indi
es j satisfying d j Nj. Suppose that �j := �j � (�i=Ni)Nj isdi�erent from 0 for all j 2 Jd. Then the 
ontribution of Ei to the residue R ofZ(d)f (s) at the 
andidate pole ��i=Ni is1Ni  �( ÆEfig) +Xj2Jd ��1j ! : (6)This 
ontribution is zero if J 
ontains one or two indi
es. Indeed, if J 
ontainsone element, relation (5) implies that J = Jd. Therefore, the 
ontribution R isthe same as in the 
ase d = 1 and by (2.3) we get R = 0. If J 
ontains twoelements, relation (5) implies that Jd = J or Jd = ;. If Jd = J , we obtainR = 0 analogously as in the previous 
ase. If Jd = ;, we get R = 0 be
ause theEuler-Poin
ar�e 
hara
teristi
 of a proje
tive line minus two points is zero.(2.12) Theorem. Let f 2 O2 and d 2 Z>1. ThenP(d)2 \ ��1;�12� = ��12 � 1i ���� i 2 Z>2 and djl
m(2; i)� :Proof. We use the notation and the 
al
ulations of (2.9). First we 
onsider the
andidate pole ��j=Nj, j 2 Ts. Be
ause Ej has numeri
al data (Nj; 1), the8




andidate pole ��j=Nj is less than �1=2 if and only if Nj = 1, and in this 
ased - Nj.(a) Suppose that mult(f) = 2. If k = 0 and d = 2, the only pole of Z(d)f (s)is �1=2. If k = 0 and d > 2 and if k = 2, we obtain that Z(d)f (s) is identi
allyzero.If k = 2r+1, we obtain from (2.11) and the 
onsideration above about Ej, j 2 Ts,that only the 
andidate pole asso
iated to Er+2 
an be a pole. So we have to
ompute the residue at the 
andidate pole �1=2 � 1=(2r + 1). If d - Nr+2, thenR = 0. If djNr, djNr+1 and djNr+2, then d = 1 and we have a 
ontradi
tion. IfdjNr, djNr+2 and d - Nr+1 (whi
h is equivalent to d = 2), then the 
ontributionR is r=(2r + 1) and this is not zero be
ause r � 1. If djNr+1, djNr+2 and d - Nr,then R = 1=(4r + 2). If djNr+2, d - Nr and d - Nr+1, then R = �1=(4r + 2). We
on
lude that �1=2� 1=(2r + 1) is a pole of Z(d)f (s) if and only if dj4r + 2.If k = 2r, r � 2, only the 
andidate pole asso
iated to Er 
an be a pole. Ifd - Nr, then R = 0. If djNr and djNr�1, then R = (r � 1)=(2r) 6= 0. If djNr andd - Nr�1, then R = �1=(2r). Consequently, �1=2� 1=(2r) is a pole of Z(d)f (s) ifand only if dj2r.Remark that we have proved thatfs0 j 9f 2 O2 : mult(f) = 2 and Z(d)f (s) has a pole in s0g n f�1=2g= ��12 � 1i ���� i 2 Z>2 and d j l
m(2; i)� :(b) Suppose that mult(f) = 3.(b.1) Case f3 = xy(x + y). We get that �1=2 � 1=6 is a pole if and onlyif dj3 (whi
h is equivalent to d = 3). This is 
onsistent with the 
laim be
ause3 j l
m(2; 6).(b.2) Case f3 = y2(x + y). If g(x) = 0, then Z(d)f (s) is identi
ally zero (forevery d � 2).If k = 2r + 1, only the 
andidate pole asso
iated to Er 
an be a pole. If djNr,then d - Nr�1 be
ause d > 1 and be
ause Nr and Nr�1 are odd numbers withdi�eren
e 2. Consequently, if dj2r + 1, then R = �1=(2r + 1) 6= 0.If k = 2r, the only 
andidate pole whi
h 
an be a pole is ��r+1=Nr+1. If djNr+1and djNr�1, then d = 1, whi
h is a 
ontradi
tion. So we have to 
onsider two
ases. If djNr+1, d - Nr and d - Nr�1, then R = �1=(4r). If djNr+1, djNr andd - Nr�1, then R = 1=(4r). We obtain that �1=2� 1=(4r) is a pole if and only ifdj4r.(b.3) Case f3 = y3. We get analogously that if we have a pole, it is of thedesired form. Remark that we only have to 
onsider the 
ase r = 1 in (b.3.i),(b.3.ii) and (b.3.iii). 9



(
) Suppose that mult(f) � 4. As before we get that Z(d)f (s) has no poleless than �1=2. �3 Surfa
esIn this se
tion, we prove the following theorem.(3.0) Theorem We haveP3\℄�1;�1[= ��1� 1i ���� i 2 Z>1� :Moreover, if f 2 O3 has multipli
ity 3 or more, then Zf(s) has no pole less than�1.Remark. (i) It is a priori not obvious that the smallest value of P3 is �3=2. Thisis in 
ontrast with the fa
t that it easily follows from lemma 2.5 that the smallestvalue of P2 is �1.(ii) In (3.3.9) we give fun
tions fk 2 O3 of arbitrary multipli
ity su
h thatZfk(s) has a pole in sk, where (sk)k is a sequen
e of real numbers larger than �1and 
onverging to �1. In parti
ular P3\℄ � 1;�41=42[6= ;, whi
h is in 
ontrastto T3\℄41=42; 1[= ;.3.1 On 
andidate poles whi
h are not poles(3.1.1) Let f be the germ of a holomorphi
 fun
tion on a neighbourhood of theorigin 0 in C 3 whi
h satis�es f(0) = 0 and whi
h is not identi
ally zero. Let Ybe the zero set of f . Fix an embedded resolution g : Xt ! X0 � C 3 for Y whi
his an isomorphism outside the singular lo
us of Y and whi
h is a 
ompositiong1 Æ � � � Æ gt of blowing-ups gi : Xi ! Xi�1 with irredu
ible nonsingular 
entreDi�1 and ex
eptional variety E(0)i satisfying for i = 0; : : : ; t� 1:(a) the 
odimension of Di in Xi is at least 2;(b) Di is a subset of the stri
t transform of Y under g1 Æ � � � Æ gi;(
) the union of the ex
eptional varieties of g1Æ� � �Ægi has only normal 
rossingswith Di, i.e., for all P 2 Di, there are three surfa
e germs through P whi
h arein normal 
rossings su
h that ea
h ex
eptional surfa
e germ through P is one ofthem and su
h that the germ of Di at P is the interse
tion of some of them;(d) the origin 0 of C 3 is an element of (g1 Æ � � � Æ gi)Di; and(e) Di 
ontains a point in whi
h (g1 Æ � � � Æ gi)�1Y has no normal 
rossings.Remark that su
h a resolution always exists by Hironaka's theorem [Hi℄.(3.1.2) Fix an ex
eptional variety E(0)i . The stri
t transform Ei of E(0)i in Xt isobtained by a �nite su

ession of blowing-ups hj, j 2 Te := f1; : : : ; mg,E(0)i h1 � E(1)i h2 � � � �E(j�1)i hj � E(j)i � � � hm�1 � E(m�1)i hm � E(m)i = Ei10



with 
entre Pj�1 2 E(j�1)i and ex
eptional 
urve C(j)j . The irredu
ible 
omponentsof the interse
tion of E(0)i with irredu
ible 
omponents of (g1Æ� � �Ægi)�1Y di�erentfrom E(0)i are denoted by C(0)j , j 2 Ts. The stri
t transform of C(k)j in E(l)i isdenoted (whenever this makes sense) by C(l)j and we set Cj = C(m)j . Remark thath := h1Æ� � �Æhm is an embedded resolution of [j2TsC(0)j . For ea
h j 2 T := Ts[Tethe 
urve Cj is an irredu
ible 
omponent of the interse
tion of Ei with exa
tlyone other 
omponent of g�1Y . Let this 
omponent have numeri
al data (Nk; �k)and set �j = �k � (�i=Ni)Nk.(3.1.3) Suppose that E(0)i � (g1 Æ � � � Æ gi)�1f0g and that �j 6= 0 for every j 2 T .The 
ontribution R of Ei to the residue of Zf(s) at the 
andidate pole ��i=Ni is1Ni  XI�T �( ÆCI)Yj2I ��1j ! ; (7)where ÆCI denotes the subset (\j2ICj) n ([j 62ICj) of Ei. Remark that ÆC;= Ei n([j2TCi). We now state some relations between the �i, whi
h will allow us toprove that this 
ontribution is identi
ally zero (i.e., zero for any value of thealphas) for a lot of interse
tion 
on�gurations on E(0)i .(3.1.4) To the 
reation of E(0)i � (g1 Æ � � � Æ gi)�1f0g in the resolution pro
ess, weasso
iate the relation Xj2Ts dj(�j � 1) + 3� dimDi�1 = 0; (8)where di, i 2 Ts, is the degree of the interse
tion 
y
le C(0)i �F on F for a general�bre F of gijE(0)i : E(0)i ! Di�1 over a point of Di�1. In parti
ular, when Di�1 isa point, we have that E(0)i �= P2 and that di is just the degree of the 
urve C(0)i .To the blowing-up hj we asso
iate the relation�j = Xk2Ts[f1;:::;j�1g�k(�k � 1) + 2; (9)where �k, k 2 Ts [ f1; : : : ; j � 1g, is the multipli
ity of Pj�1 on C(j�1)k . See [Ve1℄for more general statements in arbitrary dimension and proofs.(3.1.5) Now we pro
eed in the same way as in [Ve3℄ for Igusa's p-adi
 zetafun
tion. One easily veri�es that the number (7) does not 
hange when we do anextra blowing-up hm+1 at a point Pm 2 E(m)i and asso
iate to the new ex
eptional
urve a number � using (9). Be
ause of this observation, one 
an 
ompute R if11



one has the 
urves C(0)j , j 2 Ts, on E(0)i together with the asso
iated values �jas follows. Compute the minimal embedded resolution of [j2TsC(0)j and 
omputethe alpha asso
iated to an ex
eptional 
urve using (9). By putting these data in(7), we get R.(3.1.6) Example. Suppose that E(0)i is the ex
eptional variety of a blowing-up at a point and suppose that the interse
tion 
on�guration on E(0)i 
onsistsof three proje
tive lines C(0)j , j 2 Ts := fa; b; 
g, all passing through the samepoint P . Suppose that �j 6= 0 for all j 2 T . The minimal embedded resolutionl : W ! E(0)i is the blowing-up at P . By abuse of notation, we denote theex
eptional 
urve by C1 and the stri
t transform of C(0)j , j 2 Ts, by Cj.
������ ������-W E(0)i �= P2lCa Cb C
 C1 PsC(0)a C(0)b C(0)
By relations (8) and (9) we have �a+�b+�
 = 0 and �1 = �a+�b+�
�1 = �1respe
tively. Now we 
an 
al
ulate the 
ontribution R of the stri
t transform ofE(0)i in Xt to the residue of Zf(s) at the 
andidate pole ��i=Ni:R = 1Ni  XI�T �( ÆCI)Yj2I ��1j != 1Ni ��1� 1�1 + 1�a + 1�b + 1�
 + 1�1�a + 1�1�b + 1�1�
�= 0:We stress that R is zero for any possible value of �a, �b and �
.3.2 Multipli
ity 2(3.2.1) Let f be the germ of a holomorphi
 fun
tion on a neighbourhood of theorigin 0 in C n whi
h satis�es f(0) = 0, and let F be the germ of the holomorphi
fun
tion f +x2n+1 on a neighbourhood of the origin 0 in C n+1 . Then the followingequality is obtained in [ACLM℄, see also the Thom-Sebastiani prin
iple in [DL3℄:ZF (s) = 12s+ 1 + s(2s+ 3)2(s+ 1)(2s+ 1)Zf �s+ 12�� 3s2(s+ 1)Z(2)f �s+ 12� :(3.2.2) Proposition. The setfs0 j 9f 2 O3 : mult(f) = 2 and Zf (s) has a pole in s0g \ ℄�1;�1[12



is equal to ��1� 1i ���� i 2 Z>1� :Proof. Let f be an element of O3 with multipli
ity 2. Up to an aÆne 
oordinatetransformation, the part of degree two in the Taylor series of f is equal to x2,x2 + y2 or x2 + y2 + z2. Using (2.7), we may suppose that f is of the formx2 + g(y; z) with g(y; z) 2 O2. The formula in (3.2.1) and the result for 
urvesimply that every pole of Zf(s) less than �1 is of the form �1 � 1=i, i 2 Z>1.For the other in
lusion, we remark that the poles of the lo
al topologi
al zetafun
tion asso
iated to x2 + y2 + zi, i � 2, are �1� 1=i and �1. �(3.2.3) Our next goal is to give a sequen
e of poles larger than �1 and 
onvergingto �1. Keeping in mind the formula in (3.2.1), we try to �nd fun
tions fk 2 O2su
h that Zfk(s) has a pole in sk, where (sk)k is a sequen
e of real numbers largerthan �1=2 and 
onverging to �1=2. Set fk = x3y2 + xk for k � 5.We obtain the following equalities after some 
al
ulations:Zf2r+4(s) = 3s2 + 2rs+ 8s+ 2r + 3(4rs+ 8s+ 2r + 3)(3s+ 1)(s+ 1) ; Z(2)f2r+4(s) = 14rs+ 8s+ 2r + 3 ;Zf2r+3(s) = 3s2 � rs� 2s� r � 1(2rs+ 3s+ r + 1)(3s+ 1)(s+ 1) ; Z(2)f2r+3(s) = 0:Now we use the formula in (3.2.1) to 
al
ulate the lo
al topologi
al zeta fun
tionof Fk := fk + z2. We obtain for even and odd k thatZFk(s) = (6k � 6)s2 + (15k � 5)s+ 10k � 5(6s+ 5)(s+ 1)(2ks+ 2k � 1) :Finally, we make the substitution s = �(2k � 1)=(2k) in the numerator in orderto 
he
k that this value, whi
h 
onverges to �1 if k goes to in�nity, is a pole. Weobtain (k � 1)(k � 3)(2k � 1)2k2 :This value never be
omes zero be
ause k � 5. Consequently, �(2k � 1)=(2k) isalways a pole of ZFk(s).Remark. In parti
ular we obtain that P3\℄� 1;�41=42[6= ;, whi
h is in 
ontrastto T3\℄41=42; 1[= ;.3.3 Multipli
ity larger than 2(3.3.1) Let f be the germ of a holomorphi
 fun
tion on a neighbourhood of theorigin 0 in C 3 whi
h satis�es f(0) = 0 and whi
h is not identi
ally zero. Let Y bethe zero set of f . Fix an embedded resolution g for Y whi
h is a 
omposition of13



blowing-ups gij : Xi ! Xj with irredu
ible nonsingular 
entre Dj and ex
eptionalsurfa
e Ei as in (3.1.1). Denote the irredu
ible 
omponents of Y by Ei, i 2 Ts.The stri
t transform of a variety Ei by a su

ession of blowing-ups will be denotedin the same way. The numeri
al data of Ei are (Ni; �i).(3.3.2) The following table gives the numeri
al data of Ei. In the 
olumns, thedimension of Dj is kept �xed. In the rows, the number of ex
eptional surfa
esthrough Dj is kept �xed. So Ek, El and Em represent ex
eptional surfa
es that
ontain Dj. The multipli
ity ofDj on the stri
t transform of Y is denoted by �Dj .Dj is a point P Dj is a 
urve L/ (�P ; 3) (�L; 2)Ek (Nk + �P ; �k + 2) (Nk + �L; �k + 1)Ek and El (Nk +Nl + �P ; �k + �l + 1) (Nk +Nl + �L; �k + �l)Ek, El and Em (Nk +Nl +Nm + �P ; �k + �l + �m) /(3.3.3) Lemma. Suppose that mult(f) � 3. If there is no ex
eptional surfa
ethrough Dj, then ��i=Ni � �1.Proof. The 
ase that the 
entre Dj is a point P through whi
h no ex
eptionalsurfa
e passes 
an only o

ur in the �rst blowing-up be
ause of 
ondition (d)in (3.1.1) and be
ause the inverse image of 0 in Xj is 
ontained in the unionof the ex
eptional surfa
es in Xj. Sin
e mult(f) � 3, we have in this 
ase��i=Ni = �3=�P = �3=mult(f) � �1.If the 
entre Dj is a 
urve L 
ontained in no ex
eptional surfa
e, then �L � 2be
ause our embedded resolution is an isomorphism outside the singular lo
us ofY . Consequently, we get in this 
ase ��i=Ni = �2=�L � �1. �(3.3.4) Suppose that Dj is 
ontained in at least one ex
eptional surfa
e andthat the 
andidate poles asso
iated to the ex
eptional surfa
es that pass throughDj are larger than or equal to �1. Then the table in (3.3.2) implies that also��i=Ni � �1, unless Dj is a nonsingular point P of the stri
t transform ofY through whi
h only one ex
eptional surfa
e E0 passes and ��0=N0 = �1.Suppose that we are in this situation. Denote the unique irredu
ible 
omponentof the stri
t transform of Y whi
h passes through P by Ea. Consider now asmall enough neighbourhood Z0 of P on whi
h Ea is nonsingular su
h that, ifwe restri
t the blowing-ups gij to the inverse image of Z0, we get an embeddedresolution h = h1 Æ � � � Æ hs for the germ of Ea [ E0 at P whi
h is a 
ompositionof blowing-ups hi : Zi ! Zi�1, i 2 f1; : : : ; sg, with irredu
ible nonsingular 
entreD0i�1 := Di�1 \ Zi�1 and ex
eptional surfa
e E 0i := Ei \ Zi satisfying for i =0; : : : ; s� 1:(a) the 
odimension of D0i in Zi is at least 2;(b) D0i is a subset of E 0a := Ea \ Zi;14



(
) [l2f0;1;:::;igE 0l has only normal 
rossings with D0i, where E 00 := E0 \ Z0;(d) the image of D0i under h1 Æ � � � Æ hi 
ontains P ; and(e) if Di = D0i, then Di 
ontains a point where there are no normal 
rossings.Remark that it 
an happen that gij is an isomorphism on the inverse image ofZ0. Be
ause we did not spe
ify the indi
es in (3.3.1), we were able to get a ni
enotation here. Remark also that Di = D0i if Di is a point. From now on, westudy the resolution h : Zs ! Z0 for the germ of Ea [ E0 at P .(3.3.5) Lemma. If Di = D0i, then Di is a subset of E 00.Proof. Remark that Di has to lie in an ex
eptional surfa
e be
ause E 0a is nonsin-gular and be
ause an embedded resolution is an isomorphism outside the singularlo
us of Y .First we 
onsider the 
ase that Di = D0i is a point 
ontained in ex
eptionalsurfa
es di�erent from E 00 and in the surfa
e E 0a. The union of these surfa
es hasnormal 
rossings at Di be
ause E 0a, 
onsidered as a subset of Z0, is nonsingular.This is in 
ontradi
tion with (e). Remark that it 
an thus not happen that E 0aand three ex
eptional surfa
es di�erent from E 00 have a point in 
ommon.The 
ase that Di = D0i is a 
urve 
ontained in exa
tly two ex
eptional surfa
esdi�erent from E 00 and in the surfa
e E 0a 
annot o

ur be
ause E 0a is a nonsingularsubset of Z0 and therefore these three surfa
es should have normal 
rossings.Finally we study the 
ase that Di = D0i is a 
urve 
ontained in one ex
eptionalsurfa
e E 0j di�erent from E 00 and in E 0a. Condition (
) implies that every point ofDi is 
ontained in at most one ex
eptional surfa
e di�erent from E 0j. Moreover,su
h an ex
eptional surfa
e has to be transversal to Di. This implies that thereare normal 
rossings at every point of Di, whi
h is in 
ontradi
tion with (e).Therefore, this 
ase 
annot o

ur. �(3.3.6) Lemma. Suppose that mult(f) � 3. Then we have �i � Ni+1 for everyex
eptional surfa
e Ei, i 2 f1; : : : ; sg. Moreover, �i = Ni + 1 if and only if Di�1is a point and the numeri
al data of every ex
eptional surfa
e Ej di�erent fromE0 and through Di�1 satisfy �j = Nj + 1.Proof. The proof is by indu
tion on i. Sin
e �0 = N0, we have that �1 = N1 + 1.Suppose now that �j � Nj + 1 for every ex
eptional surfa
e Ej through Di�1.Case 1: Di�1 is a point. We obtain from (3.3.5) that Di�1 is a subset of E 00.Be
ause �0 = N0 and be
ause every other ex
eptional surfa
e Ej through Di�1satis�es �j � Nj + 1, the table of (3.3.2) gives us that �i � Ni + 1.Case 2: Di�1 is a 
urve. If Di�1 6= D0i�1, then D0i�1 6� (h1 Æ � � � Æ hi�1)�1P andtherefore we get as in the beginning of (3.3.4) that ��i=Ni � �1. If Di�1 = D0i�1,one 
omputes from (3.3.2) and the previous lemma that ��i=Ni � �1.We have now proved the �rst part of the lemma. Using this �rst part and thetable of (3.3.2), we get the se
ond part. �15



(3.3.7) Lemma. If mult(f) � 3 and if the numeri
al data of Ei satisfy �i =Ni + 1, then ��i=Ni 6= ��j=Nj for every ex
eptional surfa
e Ej that interse
tsEi at some stage of the resolution pro
ess.Proof. Let Ej be an ex
eptional surfa
e that interse
ts Ei at some stage of theresolution pro
ess. If Ej is 
reated before Ei, then Ej 
ontains the point Di�1.Otherwise, Ej is 
reated by a blowing-up at a point of Ei or by a blowing-upalong a 
urve.If Ej is 
reated by a blowing-up along a 
urve, then ��j=Nj � �1, and
onsequently ��i=Ni 6= ��j=Nj. Now we 
onsider the 
ase that Ej 
ontainsthe point Di�1. There is no problem if �j � Nj. Consequently, suppose that�j = Nj + 1. From the table in (3.3.2), we get Nj < Ni. Therefore, ��i=Ni =�(Ni + 1)=Ni > �(Nj + 1)=Nj = ��j=Nj. The 
ase that Ej is 
reated by ablowing-up at a point of Ei is treated analogously. �(3.3.8) Proposition. If mult(f) � 3, then no pole of Zf(s) is less than �1.Proof. Suppose that mult(f) � 3.We have only to 
onsider ex
eptional surfa
es with a 
andidate pole less than�1. Re
all from (3.3.6) that ��i=Ni < �1 if and only if Di�1 is a point and allex
eptional surfa
es through the point Di�1 di�erent from E0 have a 
andidatepole less than �1. We will determine all possible interse
tion 
on�gurations onsu
h surfa
es just after their 
reation.If ��i=Ni � �1 and ��i+1=Ni+1 < �1, then the blowing-ups along Di�1 andDi 
ommute with ea
h other. Therefore, we may assume that there is a k (largerthan zero be
ause ��1=N1 < �1) su
h that ��i=Ni < �1 for 1 � i � k and��i=Ni � �1 for k < i � s.The interse
tion 
on�guration on E1 
onsists of one proje
tive line, whi
his the interse
tion with E0 and Ea. The points of Z1 in whi
h we do not havenormal 
rossings and whi
h lie above P are those on this proje
tive line. Thisimplies the following statement for i = 2.If Q is a point of Zi�1, i 2 f2; : : : ; kg, in whi
h we do not have normal
rossings and whi
h lies above P (so 
onsequently Q is a point of E0, ofone or two other ex
eptional surfa
es and of Ea), then there exists anex
eptional surfa
e El through Q with the property E0\El = Ea\El. (�)We prove this statement by indu
tion on i. Suppose that it is true for i = j 2f2; : : : ; k � 1g. We give the proof for i = j + 1. The statement follows from theindu
tion hypothesis for points not on Ej, be
ause a blowing-up is an isomor-phism outside the ex
eptional surfa
e. So we prove it for points on Ej. By theindu
tion hypothesis applied to the point Dj�1, we obtain that there exists anex
eptional surfa
e El through Dj�1 su
h that E0 \ El = Ea \ El in Zj�1. Butthen Ea\El = E0\El in Zj, whi
h solves the problem for the point E0\El\Ej .There are other points on Ej in whi
h we do not have normal 
rossings if and16



only if Ea is tangent to E0 in Dj�1. In this 
ase, the points in whi
h we do nothave normal 
rossings are the points of E0 \Ej. Be
ause E0 \Ej = Ea \Ej, weare done.Be
ause the 
entre of a blowing-up satis�es the 
onditions of the statement,we obtain that the possible interse
tion 
on�gurations are the following 
on�gu-rations of lines in P2:
������ ������ ������ ������
������ ������ ������ ������For all these 
on�gurations, we 
an 
al
ulate as in (3.1.6) that the 
ontributionto the residue is 0. The se
ond author did this already in [Ve3℄ for Igusa's p-adi
zeta fun
tion. The point is that (�) ex
ludes the 
on�guration 
onsisting of fourlines in general position, for whi
h this 
ontribution is not zero. Remark also thatwe need here that the alphas are not zero, a fa
t we proved in (3.3.7). �(3.3.9) In (3.2.3), we found fun
tions fk 2 O3 of multipli
ity 2 su
h that Zfk(s)has a pole in sk, where (sk)k is a sequen
e of real numbers larger than �1 and
onverging to �1. Here we 
onstru
t for every n � 0 fun
tions fk 2 O3 ofmultipli
ity n+2 with this property. We use the formula obtained by Denef andLoeser in [DL1, Th�eor�eme 5.3℄, whi
h expresses the lo
al topologi
al zeta fun
tionof a non-degenerated polynomial in terms of its Newton polyhedron. Fix n � 0and set fk = xnz2 + x3+ny2 + xk for k � n+ 4. ThenZfk(s) = (�2n2 � 6n)s3 + (n2 + 3kn� 4n+ 6k � 6)s2+(�4n2 + 4kn� 7n+ 15k � 5)s� 10n+ 10k � 5(6s+ 2ns+ 5)(s+ 1)(2ks+ 2k � 2n� 1)(ns+ 1) :Consequently, �(2k � 2n � 1)=(2k) is a pole if and only if it is not a zero ofthe numerator. So we make the substitution s = �(2k � 2n � 1)=(2k) in the17



numerator and obtain(k � 1� 2n)(k � n� 3)(2k � 2n� 1)(2n2 � 2kn+ n + 2k)4k3 :Be
ause k � n+4, this is zero if and only if k = 1+ 2n. Thus we have found forany multipli
ity larger than one a sequen
e with the desired property.4 Other zeta fun
tions(4.1) Denef and Loeser asso
iate in [DL2℄ to a polynomial its motivi
 zeta fun
-tion, whi
h is a mu
h �ner invariant than its topologi
al zeta fun
tion. Instead ofthe usual topologi
al Euler-Poin
ar�e 
hara
teristi
, it involves the so-
alled uni-versal Euler 
hara
teristi
 of an algebrai
 variety, i.e., its 
lass in the Grothendie
kring.We re
all this notion. The Grothendie
k ring K0(VarC ) of 
omplex algebrai
varieties is the free abelian group generated by the symbols [V ℄, where V is avariety, subje
t to the relations [V ℄ = [V 0℄, if V is isomorphi
 to V 0, and [V ℄ =[V nW ℄+[W ℄, ifW is 
losed in V . Its ring stru
ture is given by [V ℄�[W ℄ := [V�W ℄.We set L := [A 1C ℄ and denote byM the lo
alization of K0(VarC ) with respe
t toL.(4.2) In [DL2℄ the motivi
 zeta fun
tion is more generally de�ned for a regularfun
tion f on a smooth algebrai
 variety X, with respe
t to a subvariety W ofX; we refer to [DL2, se
tion 2℄ for this de�nition. One easily veri�es that the
onstru
tion is still valid for a germ f of a holomorphi
 fun
tion at 0 2 C n whenW = f0g; we denote this (lo
al) motivi
 zeta fun
tion by Zmot;0;f(s). Then, withthe notation of (1.1), the formula of [DL2, Theorem 2.2.1℄ yields thatZmot;0;f(s) = L�nXI�T [ ÆEI \g�1f0g℄Yi2I L � 1L�i+sNi � 1 :Here L�s should be 
onsidered as a variable, and this expression lives in a lo
al-ization of the polynomial ringM[L�s ℄.(4.3) The motivi
 zeta fun
tion Zmot;0;f(s) spe
ializes to Ztop;0;f(s) [DL2, sub-se
tion 2.3℄, but also to various `intermediate level' zeta fun
tions. An importantone uses Hodge polynomials. Re
all that the Hodge polynomial of a 
omplexalgebrai
 variety V isH(V ) = H(V; u; v) :=Xp;q  Xi�0 (�1)ihp;q �H i
(V; C )�!upvq 2 Z[u; v℄;18



where hp;q (H i
(V; C )) is the rank of the (p; q)-Hodge 
omponent of the i-th 
oho-mology group with 
ompa
t support of V . The zeta fun
tion of f on this levelis ZHod;0;f(s) = (uv)�nXI�T H � ÆEI \g�1f0g�Yi2I uv � 1(uv)�i+sNi � 1;here (uv)�s is a variable, and this zeta fun
tion lives e.g. in the �eld of rationalfun
tions in (uv)�s over Q (u; v).(4.4) As in [RV℄ we de�ne the poles of ZHod;0;f(s) to be the real numbers s0 su
hthat (uv)�s0 is a pole of ZHod;0;f(s), 
onsidered as rational fun
tion in (uv)�s.Then we have the following.Theorems 2.9 and 3.0 are still valid with Zf (s) = Ztop;0;f(s) repla
ed byZHod;0;f(s) and Pn = fs0 j 9f 2 On : ZHod;0;f(s) has a pole in s0g. The proofsare the same as before; they essentially just use the `geometry' of a resolution.A good de�nition of poles of Zmot;0;f(s) is not immediately 
lear, due to thefa
t thatM 
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