ON THE POLES OF MAXIMAL ORDER OF THE TOPOLOGICAL ZETA FUNCTION

Ann Laeremans and Willem Veys

Abstract

The global and local topological zeta functions are singularity invariants associated to a polynomial f and its germ at 0 , respectively. By definition these zeta functions are rational functions in one variable and their poles are negative rational numbers. In this paper we study their poles of maximal possible order. When f is non degenerate with respect to its Newton polyhedron we prove that its local topological zeta function has at most one such pole, in which case it is also the largest pole; concerning the global zeta function we give a similar result. Moreover for any f we show that poles of maximal possible order are always of the form $-1 / N$ with N a positive integer.

Introduction

(0.1) To $f \in \mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$ is associated a singularity invariant, called the topological zeta function of f, which is expressed as follows in terms of an embedded resolution of $f^{-1}\{0\} \subset \mathbb{A}^{n}$. For simplicity of notation suppose that $f(0)=0$.

Let $h: X \rightarrow \mathbb{A}^{n}$ be an embedded resolution of $f^{-1}\{0\}$. We denote by $E_{i}, i \in S$, the irreducible components of $h^{-1}\left(f^{-1}\{0\}\right)$, and by N_{i} and $\nu_{i}-1$ the multiplicities of E_{i} in the divisor on X of $f \circ h$ and $h^{*}\left(d x_{1} \wedge \cdots \wedge d x_{n}\right)$, respectively. The $\left(N_{i}, \nu_{i}\right), i \in S$, are called the numerical data of the resolution (X, h). For $I \subset T$ we denote also $E_{I}:=\cap_{i \in I} E_{i}$ and $E_{I}^{\circ}:=E_{I} \backslash\left(\cap_{j \notin I} E_{j}\right)$.

Definition. Let $\chi(\cdot)$ denote the topological Euler-Poincaré characteristic. To f and $d \in \mathbb{N} \backslash\{0\}$ one associates the rational functions in one variable

$$
Z_{\mathrm{top}}(s)=Z_{\mathrm{top}}^{(d)}(s):=\sum_{\substack{I \subset S \\ \forall i \in I: d \mid N_{i}}} \chi\left(E_{I}^{\circ}\right) \prod_{i \in I} \frac{1}{N_{i} s+\nu_{i}}
$$

and

$$
Z_{\mathrm{top}, 0}(s)=Z_{\mathrm{top}, 0}^{(d)}(s):=\sum_{\substack{I \subset S \\ \forall i \in I: d \mid N_{i}}} \chi\left(E_{I}^{\circ} \cap h^{-1}\{0\}\right) \prod_{i \in I} \frac{1}{N_{i} s+\nu_{i}}
$$

[^0]which are both called the topological zeta function of f, more precisely the global and local one, respectively. They are invariants of f and the germ of f at 0 , respectively, and were introduced by Denef and Loeser in [DL1]. The remarkable fact that these expressions do not depend on the chosen resolution was originally proved by writing them as a certain limit of Igusa's local zeta functions [DL1]; it also follows by considering the topological zeta function as a specialization of the recently introduced motivic Igusa zeta functions, see [DL2, (2.3)].
(0.2) In particular the poles of the topological zeta function of f are interesting invariants, and various conjectures relate them to the eigenvalues of local monodromy of f, see for example [DL1, Ve3]. In this paper we study the poles of maximal possible order, i.e. of order n. Concerning the local topological zeta function there is the following conjecture of the second author, which he proved for $n=2$ in $[\mathrm{Ve} 2$, Theorem 4.2].

Conjecture. (i) $Z_{\text {top }, 0}(s)$ has at most one pole of order n, and
(ii) if $Z_{\mathrm{top}, 0}(s)$ has in \tilde{s} a pole of order n, then \tilde{s} is the largest pole of $Z_{\mathrm{top}, 0}(s)$.

Remark that in any case the largest candidate pole of $Z_{\text {top }, 0}^{(1)}(s)$ is just the so-called \log canonical threshold of f at 0 , denoted $c_{0}(f)$, see $[\mathrm{K}]$. We have that $-c_{0}(f)$ is the largest root of the Bernstein-Sato polynomial of f, and if 0 is an isolated singularity of $f^{-1}\{0\}$, then $c_{0}(f)=\min \left\{1, \alpha_{f}\right\}$, where α_{f} is Arnold's complex singularity index [AVG].
(0.3) We will prove that the conjecture above is true for polynomials f which are non degenerate with respect to their Newton polyhedron at the origin. Remark that 'almost all' polynomials satisfy this property. And concerning the global topological zeta function we obtain the following.

Proposition. Let f be non degenerate with respect to its global Newton polyhedron. Then
(i) $Z_{\mathrm{top}}(s)$ has at most 2 poles of order n, and
(ii) if $Z_{\mathrm{top}, 0}(s)$ has in \tilde{s} a pole of order n, then $\tilde{s}=-1$ or \tilde{s} is the largest pole of $Z_{\mathrm{top}}(s)$.

Here we should remark that this last result is specific for non degenerate polynomials; it is not true for general f.
(0.4) Finally we show that any pole of order n of $Z_{\text {top }, 0}(s)$ or $Z_{\text {top }}(s)$ must be of the form $-1 / N$ with $N \in \mathbb{N} \backslash\{0\}$. This is an immediate corollary of the following geometrical result.

Theorem. We use the notation of (0.1). Suppose that $E_{i}, i \in I$, are n different components of $h^{-1}\left(f^{-1}\{0\}\right)$, such that $\cap_{i \in I} E_{i} \neq \emptyset$ and $\frac{\nu_{i}}{N_{i}}=t$ for all $i \in I$; then $t=\frac{1}{N}$ for some $N \in \mathbb{N} \backslash\{0\}$.

1. Formulas for non degenerate polynomials

(1.1) Let $f \in \mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$ be a non-constant polynomial satisfying $f(0)=0$. We write $f=\sum_{k \in \mathbb{N}^{n}} a_{k} x^{k}$, where $k=\left(k_{1}, \ldots, k_{n}\right)$ and $x^{k}=x_{1}^{k_{1}} \cdot \ldots x_{n}^{k_{n}}$; then the support of f is supp $f=\left\{k \in \mathbb{N}^{n} \mid a_{k} \neq 0\right\}$. The global Newton polyhedron $\Gamma_{g l}$ of f is the convex hull of supp f, and the Newton polyhedron Γ_{0} of f at the origin is the convex hull of $\Gamma_{g l}+\mathbb{R}_{+}^{n} \cdot\left(\mathbb{R}_{+}=\{x \in \mathbb{R} \mid x \geq 0\}.\right)$
1.2. Definition. One says that f is non degenerate with respect to $\Gamma_{g l}$ and Γ_{0} if for every face τ of $\Gamma_{g l}$ (including $\tau=\Gamma_{g l}$) and every compact face τ of Γ_{0}, respectively, the polynomials $f_{\tau}:=\sum_{k \in \tau} a_{k} x^{k}$ and $\partial f_{\tau} / \partial x_{i}, 1 \leq i \leq n$, have no common zeroes in $(\mathbb{C} \backslash\{0\})^{n}$.

Roughly speaking, almost all polynomials are non degenerate with respect to $\Gamma_{g l}$ or Γ_{0} [AVG, p.157].
(1.3) For $a=\left(a_{1}, \ldots, a_{n}\right) \in \mathbb{R}_{+}^{n}$ we put $N(a):=\inf _{x \in \Gamma_{0}} a \cdot x, \nu(a):=\sum_{i=1}^{n} a_{i}$ and $F(a):=\left\{x \in \Gamma_{0} \mid a \cdot x=N(a)\right\}$. It is a fact that all $F(a), a \neq 0$, are faces of Γ_{0}. One associates to a face τ of Γ_{0} a (dual) cone $\tau^{\circ} \subset \mathbb{R}^{n}$, defined as the closure in \mathbb{R}^{n} of $\left\{a \in \mathbb{R}_{+}^{n} \mid F(a)=\tau\right\}$. It is a rational convex cone, with vertex the origin, of dimension $n-\operatorname{dim} \tau$. In particular if $\operatorname{dim} \tau=n-1$ then τ° is a ray, say $\tau^{\circ}=a \mathbb{R}^{+}$for some $a \in \mathbb{N}^{n}$, and then the equation of the hyperplane through τ is $a \cdot x=N(a)$. Also the map $\tau \mapsto \tau^{\circ}$ is inclusion-reversing.

Finally we recall that faces of dimension $n-1$ of Γ_{0} are called facets and that every face τ with $\operatorname{dim} \tau<n$ is the intersection of the facets that contain τ.
(1.4) We will recall below a formula for the topological zeta function when f is non degenerate. We first describe the terms that appear in this formula. Let C be a rational simplicial cone in \mathbb{R}_{+}^{n} (with vertex the origin); so it is of the form $C=\mathbb{R}_{+} a_{1}+\cdots+\mathbb{R}_{+} a_{\ell}$, where $a_{1}, \ldots, a_{\ell} \in \mathbb{N}^{n}$ are linearly independent over \mathbb{R} and are primitive, i.e. with relatively prime components. We associate to C (and Γ_{0}) the rational function

$$
J_{C}(s):=\frac{\operatorname{mult}(C)}{\prod_{i=1}^{\ell}\left(N\left(a_{i}\right) s+\nu\left(a_{i}\right)\right)}
$$

where $\operatorname{mult}(C) \in \mathbb{N} \backslash\{0\}$ is the multiplicity of C, whose definition is not important for our results, but is given for completeness in 1.8 below.
1.5. Definition. To an arbitrary face τ of Γ_{0} we associate a rational function $J_{\tau}(s)$ as follows.
(i) If $\tau=\Gamma_{0}$ we put $J_{\tau}(s):=1$.
(ii) Otherwise choose a decomposition $\tau^{\circ}=\cup_{i=1}^{r} C_{i}$ of τ° in rational simplicial cones C_{i} of dimension $\ell=\operatorname{dim} \tau^{\circ}$ such that $\operatorname{dim}\left(C_{i} \cap C_{j}\right)<\ell$ if $i \neq j$. Then put $J_{\tau}(s):=$ $\sum_{i=1}^{r} J_{C_{i}}(s)$.

As shown in [DL1, Lemme 5.1.1] the function $J_{\tau}(s)$ above does not depend on the chosen decomposition of τ° and is thus well defined, and moreover the poles of $J_{\tau}(s)$ are of the form $-\nu(a) / N(a)$, where a is orthogonal to a facet of Γ_{0} containing τ.
1.6. Theorem. [DL1, Théorème 5.3] (i) If f is non degenerate with respect to Γ_{0}, then

$$
Z_{\text {top }, 0}^{(1)}(s)=\sum_{\tau \text { vertex of } \Gamma_{0}} J_{\tau}(s)+\left(\frac{s}{s+1}\right) \sum_{\substack{\tau \text { compact } \\ \text { face of } \Gamma_{0}, \operatorname{dim} \tau \geq 1}}(-1)^{\operatorname{dim} \tau}(\operatorname{dim} \tau)!\operatorname{Vol}(\tau) J_{\tau}(s)
$$

and

$$
Z_{\text {top }, 0}^{(d)}(s)=\sum_{\substack{\tau \text { compact } \\ \text { face of } \Gamma_{0}, d \mid N\left(\tau^{\circ}\right)}}(-1)^{\operatorname{dim} \tau}(\operatorname{dim} \tau)!\operatorname{Vol}(\tau) J_{\tau}(s) \quad \text { if } d>1,
$$

where $N\left(\tau^{\circ}\right):=\operatorname{lcd}_{a \in \tau^{\circ} \cap \mathbb{N}^{n}} N(a)$, and where $\operatorname{Vol}(\tau) \in \mathbb{N} \backslash\{0\}$ is defined in 1.8 below.
(ii) If f is non degenerate with respect to $\Gamma_{g l}$, then there are analogous formulas for $Z_{\mathrm{top}}^{(1)}(s)$ and $Z_{\mathrm{top}}^{(d)}(s), d>1$, where the summation now runs over all faces of Γ_{0}.

Again we will not need the concrete meaning of $\operatorname{Vol}(\tau)$ for our results.
(1.7) Let $t_{0}=\min \left\{t \in \mathbb{R} \mid(t, \ldots, t) \in \Gamma_{0}\right\}$ and let τ_{0} denote the face of Γ_{0} that contains $\left(t_{0}, \ldots, t_{0}\right)$ in its relative interior. One can verify that $s_{0}:=-\frac{1}{t_{0}}$ is the largest candidate-pole of $Z_{\mathrm{top}, 0}^{(d)}(s)$ or $Z_{\text {top }}^{(d)}(s)$, besides -1 when $d=1$.
(1.8) For the interested reader we recall here the definitions of the volume of a face and the multiplicity of a cone. Let γ be the convex hull in \mathbb{R}^{n} of a part of \mathbb{Z}^{n}. We denote by ω_{γ} the volume form on $\operatorname{Aff}(\gamma)$, the affine space spanned by γ, such that the parallelepiped spanned by a lattice-basis of $\mathbb{Z}^{n} \cap \operatorname{Aff}(\gamma)$ has volume 1.
(i) Let τ be a face of Γ_{0}. If $\operatorname{dim} \tau=0$ we put $\operatorname{Vol}(\tau):=1$; otherwise we define $\operatorname{Vol}(\tau)$ as the volume of $\tau \cap \Gamma_{g l}$ for the volume form ω_{τ}. (When τ is compact then $\tau \cap \Gamma_{g l}=\tau$.)
(ii) Let C be the ℓ-dimensional rational simplicial cone in \mathbb{R}_{+}^{n} given by $C=\mathbb{R}_{+} a_{1}+$ $\cdots+\mathbb{R}_{+} a_{\ell}$, where all a_{i} are primitive. Then $\operatorname{mult}(C)$ is the volume of the parallelepiped spanned by a_{1}, \ldots, a_{ℓ} for the volume form ω_{C}.

2. Determination of the poles of maximal order

Still using the notation of $\S 1$, we first derive some convex-geometric lemmas.
Lemma 2.1. Let V be a vertex of Γ_{0} such that $J_{V}(s)$ has in \tilde{s} a pole of order n. Then $V=\left(-\frac{1}{\tilde{s}}, \ldots,-\frac{1}{\tilde{s}}\right)$.

Proof. We choose a decomposition of the dual cone V° as described in Definition 1.5, and moreover without introducing new rays. This is always possible [DS, Lemme 2.3]. Take a simplicial cone C in this decomposition such that $J_{C}(s)$ has in \tilde{s} a pole of order n, and let ξ_{1}, \ldots, ξ_{n} be the primitive generators of C in \mathbb{N}^{n}. By the construction of the chosen decomposition we have that $F\left(\xi_{1}\right), \ldots, F\left(\xi_{n}\right)$ are facets of Γ_{0} containing V. Since $J_{C}(s)$ has in \tilde{s} a pole of order n, we have moreover that $\tilde{s}=-\frac{\nu\left(\xi_{i}\right)}{N\left(\xi_{i}\right)}$ for
$i=1, \ldots, n$. Letting H_{i} denote the affine hyperplane through $F\left(\xi_{i}\right), 1 \leq i \leq n$ and $\Delta=\{(t, \ldots, t) \mid t \in \mathbb{R}\}$ the diagonal, we thus obtain that $H_{i} \cap \Delta=\left(-\frac{1}{\tilde{s}}, \ldots,-\frac{1}{\tilde{s}}\right)$ for $i=1, \ldots, n$. From $V=\cap_{i=1}^{n} F\left(\xi_{i}\right)$ we then derive

$$
V \cap \Delta=\cap_{i=1}^{n}\left(F\left(\xi_{i}\right) \cap \Delta\right) \subset \cap_{i=1}^{n}\left(H_{i} \cap \Delta\right)=\left\{\left(-\frac{1}{\tilde{s}}, \ldots,-\frac{1}{\tilde{s}}\right)\right\},
$$

and so $V=\left(-\frac{1}{\tilde{s}}, \ldots,-\frac{1}{\tilde{s}}\right)$.

Lemma 2.2. Let γ be a 1-dimensional face of Γ_{0} such that $J_{\gamma}(s)$ has in -1 a pole of order $n-1$. Then $(1, \ldots, 1)$ is contained in the affine line L_{γ} through γ.

Proof. As in the proof of Lemma 2.1 we choose a decomposition of γ° as in Definition 1.5 without introducing new rays. Take a cone C in the decomposition such that $J_{C}(s)$ has in -1 a pole of order $n-1$, and let $\xi_{1}, \ldots, \xi_{n-1}$ be the primitive generators of C in \mathbb{N}^{n}. Again $\mathrm{F}\left(\xi_{1}\right), \ldots, \mathrm{F}\left(\xi_{n-1}\right)$ are facets of Γ_{0} containing γ, and here $\nu\left(\xi_{i}\right)=N\left(\xi_{i}\right)$ for $i=1, \ldots, n-1$. Letting H_{i} denote the affine hyperplane through $F\left(\xi_{i}\right)$, we thus have that $(1, \ldots, 1) \in H_{i}$ for $i=1, \ldots, n-1$. Since $\gamma=\cap_{i=1}^{n-1} F\left(\xi_{i}\right)$ and consequently $L_{\gamma}=\cap_{i=1}^{n-1} H_{i}$ we obtain that $(1, \ldots, 1) \in L_{\gamma}$.

Lemma 2.3. Let γ be a 1-dimensional compact face of Γ_{0} such that the affine line L_{γ} through γ contains $(1, \ldots, 1)$. Then $(1, \ldots, 1) \in \gamma$.

Proof. Let V_{1} and V_{2} denote the vertices of γ. Let F_{1}, \ldots, F_{n-1} be facets of Γ_{0} such that $\gamma=\cap_{i=1}^{n-1} F_{i}$ and let $\xi_{i} \in \mathbb{N}_{+}^{n}$ be such that $F\left(\xi_{i}\right)=F_{i}$ for $i=1, \ldots, n-1$. Since $(1, \ldots, 1) \in L_{\gamma}$ we have that $\nu\left(\xi_{i}\right)=N\left(\xi_{i}\right)$ for $i=1, \ldots, n-1$. Let now $t \in \mathbb{R}$ be such that $(1, \ldots, 1)=t V_{1}+(1-t) V_{2}$; it suffices to prove that $0 \leq t \leq 1$.

We assume that $V_{1} \neq(1, \ldots, 1)$ (the other case being trivial). We will denote the j th coordinate of $a \in \mathbb{N}^{n}$ by $(a)_{j}$. Suppose that $V_{1} \in(1, \ldots, 1)+\mathbb{R}_{+}^{n}$; then there exists some j in $\{1, \ldots, n\}$ such that $\left(V_{1}\right)_{j}>1$. It then follows from $V_{1} \in \gamma$ and $\nu\left(\xi_{i}\right)=N\left(\xi_{i}\right)=\xi_{i} \cdot V_{1}$ that $\left(\xi_{i}\right)_{j}=0$ for $i=1, \ldots, n-1$. This contradicts the compactness of γ. Hence $V_{1} \notin(1, \ldots, 1)+\mathbb{R}_{+}^{n}$.

Let then $j \in\{1, \ldots, n\}$ be such that $\left(V_{1}\right)_{j}=0$. Then $1=(1-t)\left(V_{2}\right)_{j}$, which immediately implies that $0<1-t=\frac{1}{\left(V_{2}\right)_{j}} \leq 1$.

Remark. As illustrated in Example 2.6, the condition compact in the statement of Lemma 2.3 cannot be omitted. Because of this fact, the proof we will give for Theorem 2.4 fails when we replace $Z_{\text {top }, 0}(s)$ by $Z_{\text {top }}(s)$.
2.4. Theorem. Let f be non degenerate with respect to Γ_{0}. Then
(i) $Z_{\text {top }, 0}(s)$ has at most one pole of order n, and
(ii) if $Z_{\mathrm{top}, 0}(s)$ has in \tilde{s} a pole of order n, then \tilde{s} is the largest pole of $Z_{\mathrm{top}, 0}(s)$.

Proof. We will prove (ii) which immediately yields (i). So suppose that $Z_{\text {top }, 0}^{(d)}(s)$ has in \tilde{s} a pole of order n; then there is at least one term in the formula of Theorem 1.6 for $Z_{\text {top }, 0}^{(d)}(s)$ that has in \tilde{s} a pole of order n.

Suppose first that there exists a vertex V of Γ_{0} such that $J_{V}(s)$ has in \tilde{s} a pole of order n (and such that $\left.d \mid N\left(V^{\circ}\right)\right)$. Then by Lemma 2.1 we must have $V=\left(-\frac{1}{\tilde{s}}, \ldots,-\frac{1}{\tilde{s}}\right)$; so $V=\tau_{0}$ and $\tilde{s}=s_{0}$.

Suppose on the other hand that there is no such vertex of Γ_{0}. Then necessarily $d=1$ and $\tilde{s}=-1$ and there must exist a compact 1 -dimensional face γ of Γ_{0} such that $J_{\gamma}(s)$ has in -1 a pole of order $n-1$. Then Lemmas 2.2 and 2.3 imply that $(1, \ldots, 1) \in \gamma$, and thus $\tau_{0} \subset \gamma$ and $s_{0}=-1=\tilde{s}$.

So we proved Conjecture 0.2 for non degenerate polynomials. Analogous arguments yield the following result concerning the global zeta function $Z_{\mathrm{top}}(s)$.
2.5. Proposition. Let f be non degenerate with respect to $\Gamma_{g l}$. Then
(i) $Z_{\text {top }}(s)$ has at most 2 poles of order n, and
(ii) if $Z_{\text {top }, 0}(s)$ has in \tilde{s} a pole of order n, then $\tilde{s}=-1$ or \tilde{s} is the largest pole of $Z_{\text {top }}(s)$.

Proof. We only have to prove (ii). Suppose that $Z_{\text {top }}^{(d)}(s)$ has in $\tilde{s} \neq-1$ a pole of order n. Then there is a vertex V of Γ_{0} such that $J_{V}(s)$ has in \tilde{s} a pole of order n (and such that $\left.d \mid N\left(V^{\circ}\right)\right)$. By Lemma 2.1 we have that $V=\left(-\frac{1}{\tilde{s}}, \ldots,-\frac{1}{\tilde{s}}\right)$ and so $V=\tau_{0}$ and $\tilde{s}=s_{0}$.
2.6. Example. Take $f=x^{2} y^{2}+x^{4} y+x y^{4}+x y^{5}=x y\left(x y+x^{3}+y^{3}+y^{4}\right)$. Its Newton polyhedron Γ_{0} and the diagram of dual cones associated to the faces of Γ_{0} are pictured in Figures 1 and 2, respectively. We denoted by V_{1}, V_{2} and V_{3} the vertices of Γ_{0} and by γ_{12} and γ_{23} its compact faces. One easily verifies that f is non degenerate with respect to both Γ_{0} and $\Gamma_{g l}$. Theorem 1.6(i) yields

$$
\begin{aligned}
Z_{\text {top }, 0}^{(1)}(s)= & J_{V_{1}}(s)+J_{V_{2}}(s)+J_{V_{3}}(s) \\
& \quad+\frac{s}{s+1}\left((-1) \operatorname{Vol}\left(\gamma_{12}\right) J_{\gamma_{12}}(s)+(-1) \operatorname{Vol}\left(\gamma_{23}\right) J_{\gamma_{23}}(s)\right) \\
= & 2 \frac{1}{(s+1)(6 s+3)}+\frac{3}{(6 s+3)^{2}}+\frac{s}{s+1}\left(2(-1) \cdot 1 \cdot \frac{1}{(6 s+3)}\right) \\
= & \frac{-4 s^{2}+3 s+3}{3(s+1)(2 s+1)^{2}} .
\end{aligned}
$$

Alternatively we can construct the minimal embedded resolution of the germ of $f^{-1}\{0\}$ at 0 . It consists of 3 exceptional curves, intersecting as in Figure 3, where the dots correspond to intersections of the exceptional divisor with the strict transform of $f^{-1}\{0\}$. Since the numerical data of each component of this strict transform are $(1,1)$ we have by definition that

$$
Z_{\mathrm{top}, 0}^{(1)}(s)=2 \frac{1}{6 s+3}\left(-1+2 \frac{1}{s+1}+\frac{1}{4 s+2}\right)+\frac{0}{4 s+2}
$$

yielding (fortunately) the same result. So $-\frac{1}{2}$ is the only pole of order 2 and it is indeed the largest pole. Using Theorem 1.6(ii) or by considering the (global) embedded resolution of $f^{-1}\{0\} \subset \mathbb{A}^{2}$ one can analogously compute that

$$
Z_{\text {top }}^{(1)}(s)=\frac{72 s^{4}+128 s^{3}+77 s^{2}+21 s+3}{3(s+1)^{2}(2 s+1)^{2}}
$$

which confirms Proposition 2.5.
2.7. Remark. Proposition 2.5 however is specific for non degenerate polynomials; it is not true for arbitrary f. One can easily construct counterexamples where f is not reduced, e.g. $f=x y(x-1)^{2}(y-1)^{2}(x-2)^{3}(y-2)^{3}$ with double poles for $Z_{\text {top }}^{(1)}(s)$ at $-1,-\frac{1}{2}$ and $-\frac{1}{3}$. An irreducible counterexample derived from it with the same double poles is $f=x y(x-1)^{2}(y-1)^{2}(x-2)^{3}(y-2)^{3}+(x-y)^{7}$. ???

3. Poles of maximal order are of the form $-1 / N$

(3.1) From the proofs in the previous section it was already clear that when f is non degenerate with respect to its Newton polyhedron, then a pole of order n of $Z_{\text {top }, 0}(s)$ or $Z_{\text {top }}(s)$ must be of the form $-1 / N$ with $N \in \mathbb{N} \backslash\{0\}$. We will prove this in general.

We now reconsider the defining expression of the topological zeta function in (0.1) in terms of the embedded resolution (X, h). It is obvious that if \tilde{s} is a pole of order n of $Z_{\mathrm{top}, 0}(s)$ or $Z_{\mathrm{top}}(s)$, then there exist n different $E_{i}, i \in I \subset S$, such that $\cap_{i \in I} E_{i} \neq \emptyset$ and $\tilde{s}=-\nu_{i} / N_{i}$ for all $i \in I$. The following result treats this situation in a slightly more general setting.
3.2. Theorem. Let $D=\sum_{i} N_{i} D_{i}$ be an effective divisor on a nonsingular variety Y of dimension n. Take an embedded resolution $h: X \rightarrow Y$ of D in the sense of Hironaka's Main Theorem II [H, page 142], and let $E_{i}, i \in S$, be the irreducible components of $h^{-1}(\operatorname{supp} D)$. Denote $h^{*} D=\sum_{i \in S} N_{i} E_{i}$ and $K_{X}=\sum_{i \in S}\left(\nu_{i}-1\right) E_{i}+h^{*} K_{Y}$. Suppose that there exist n different $E_{i}, i \in I \subset S$, such that $\cap_{i \in I} E_{i} \neq \emptyset$ and $\nu_{i} / N_{i}=t$ for all $i \in I$; then $t=1 / N$ for some $N \in \mathbb{N} \backslash\{0\}$.

Proof. If at least one $E_{i}, i \in I$, is an irreducible component of the strict transform of D, then clearly $t=1 / N_{i}$. So from now on we suppose that all $E_{i}, i \in I$, are exceptional varieties.

At a certain step of the resolution process h one of the $E_{i}, i \in I$, is created as the exceptional variety of a blowing-up and the other ones are strict transforms of previously created exceptional varieties. We now consider the following situation (*) of which this 'step' is a special case.

Let $\pi: X_{1} \rightarrow X_{0}$ be a blowing-up of h with centre C_{0} of codimension $d \geq 2$ in X_{0} and exceptional variety $E_{1} \subset X_{1}$. Suppose that
(i) there exists a point $P \in E_{1}$ belonging to n different exceptional varieties of h, say $P \in E_{1} \cap \tilde{E}_{2} \cap \cdots \cap \tilde{E}_{n}$, where \tilde{E}_{j} is the strict transform of $E_{j} \subset X_{0}$ for $j=2, \ldots, n$; and
(ii) $\frac{\nu_{1}}{N_{1}+a_{1}}=\frac{\nu_{2}}{N_{2}+a_{2}}=\cdots=\frac{\nu_{n}}{N_{n}+a_{n}}=t$, where the $a_{i} \in \mathbb{Z}$ (and such that all $\left.N_{i}+a_{i} \neq 0\right)$.

We claim that we may suppose (after renumbering) that $E_{2}, \ldots, E_{d} \supset C_{0}$ and E_{d+1}, $\ldots, E_{n} \not \supset C_{0}$. Indeed since C_{0} has normal crossings with $\cup_{\ell=2}^{n} E_{\ell}$ we can take local parameters y_{1}, \ldots, y_{n} at $Q=\pi(P)$ such that C_{0} is given locally at Q by $y_{1}=\cdots=$ $y_{d}=0$ and the $E_{\ell}, 2 \leq \ell \leq d$, by some $y_{j}=0$. Certainly at most d of the E_{ℓ} can contain C_{0}, but since $P \in \tilde{E}_{\ell}$ for all ℓ in fact at most $d-1$ of them can satisfy $E_{\ell} \supset C_{0}$. On the other hand it is also clear that at most $n-d$ of the E_{ℓ} can satisfy $E_{\ell} \not \supset C_{0}$. This proves the claim.

So we are left with two possibilities :
(1) no other exceptional variety of h contains C_{0}, or (say)
(2) also $E_{n+1} \supset C_{0}$.

We will show that then
(1') $t=1 / N$ for some $N \in \mathbb{N} \backslash\{0\}$, and
(2') $t=\frac{\nu_{n+1}}{N_{n+1}+a_{n+1}}$ for some $a_{n+1} \in \mathbb{Z}$,
respectively. Recall the well-known (and easily derived) equalities

$$
N_{1}=\sum_{i=2}^{d} N_{i}+\mu<+N_{n+1}>\quad \text { and } \quad \nu_{1}=\sum_{i=2}^{d}\left(\nu_{i}-1\right)+d<+\nu_{n+1}-1>,
$$

where μ is the multiplicity of the generic point of C_{0} on the strict transform of D on X_{0}, and in case (1) and (2) the terms within brackets do not and do occur, respectively. So

$$
t=\frac{\nu_{1}}{N_{1}+a_{1}}=\frac{\sum_{i=2}^{d} \nu_{i}+1<+\nu_{n+1}-1>}{\sum_{i=2}^{d}\left(N_{i}+a_{i}\right)+\left(\mu+a_{1}-\sum_{i=2}^{d} a_{i}\right)<+N_{n+1}>}
$$

which implies by the trivial Lemma 3.3 below that

$$
t=\frac{1<+\nu_{n+1}-1>}{\mu+a_{1}-\sum_{i=2}^{d} a_{i}<+N_{n+1}>} .
$$

This is what we claimed in (1^{\prime}) and (2^{\prime}).
Now we can prove the theorem by consecutive applications of our study of the situation (*). Start with the blowing-up of h where $\cap_{i \in I} E_{i}$ is created. In case (1) we are done. In case (2) we obtain (using the notation above) $Q \in \cap_{j=2}^{n+1} E_{j}$ which induces by (2') a new situation (*). We can now repeat the same arguments untill, by finiteness of the resolution, we encounter a case (1).
3.3. Lemma. Let $k \geq 2$ and take $b_{i}, c_{i} \in \mathbb{N} \backslash\{0\}$ for $i=1, \ldots, k+1$. If $\frac{b_{1}}{c_{1}}=\cdots=\frac{b_{k}}{c_{k}}$ and $\frac{b_{1}}{c_{1}}=\frac{b_{2}+\cdots+b_{k}+b_{k+1}}{c_{2}+\cdots+c_{k}+c_{k+1}}$, then $\frac{b_{1}}{c_{1}}=\frac{b_{k+1}}{c_{k+1}}$.
3.4. Corollary. Any pole of order n of $Z_{\mathrm{top}, 0}(s)$ or $Z_{\mathrm{top}}(s)$ is of the form $-1 / N$ with $N \in \mathbb{N} \backslash\{0\}$.
3.5. Remark. Theorem 3.2 also implies that any (complex) pole of order n of Igusa's local zeta function, associated to a polynomial in n variables over a p-adic field, has real part $-1 / N$ with $N \in \mathbb{N} \backslash\{0\}$. See for example [I,D] for this concept. An analogous result follows for the motivic Igusa zeta functions of [DL2] when one defines in a natural way a pole and its order for these zeta functions.

References

[AVG] V. Arnold, A. Varchenko and S. Goussein-Zadé, Singularités des applications différentiables II, Editions Mir, Moscou, 1986.
[B] J. Bernstein, Modules over a ring of differential operators, Func. Anal. Appl. 5 (1971), 89-101.
[D] J. Denef, Report on Igusa's local zeta function, Sém. Bourbaki 741, Astérisque 201/203 (1991), 359-386.
[DL1] J. Denef and F. Loeser, Caractéristiques d'Euler-Poincaré, fonctions zeta locales, et modifications analytiques, J. Amer. Math. Soc. 5, 4 (1992), 705-720.
[DL2] , Motivic Igusa zeta functions, J. Alg. Geom. (1998).
[DS] J. Denef and P. Sargos, Polyèdre de Newton et distribution f_{+}^{s}, I, J. Anal. Math. 53 (1989), 201-218.
[H] H. Hironaka, Resolution of singularities of an algebraic variety over a field of characteristic zero, Ann. Math. 79 (1964), 109-326.
[I] J. Igusa, Complex powers and asymptotic expansions I, J. Reine Angew. Math. 268/269 (1974), 110-130; II, ibid. 278/279 (1975), 307-321.
[K] J. Kollár, Singularities of pairs, Proceedings A.M.S. Summer Research Institute on Algebraic Geometry, Santa Cruz 1995 (to appear).
[L] A. Laeremans, The distribution $|f|^{s}$, topological zeta functions and Newton polyhedra, Ph. D. thesis, Univ. Leuven, 1997.
[Va] A. Varchenko, Asymptotic Hodge structure in the vanishing cohomology, Math. USSR. Izv. 18 (1982), 469-512.
[Ve1] W. Veys, On the poles of Igusa's local zeta function for curves, J. London Math. Soc. 41, 2 (1990), 27-32.
[Ve2] , Determination of the poles of the topological zeta function for curves, Manuscripta Math. 87 (1995), 435-448.
[Ve3] , On Euler characteristics associated to exceptional divisors, Trans. Amer. Math. Soc. 347 (1995), 3287-3300.
A. Laeremans, EHSAL, Stormstrat 2, B-1000 Brussel, Belgium

E-mail address: laann@mail1.ehsal.be
W. Veys, K.U.Leuven, Departement Wiskunde, Celestijnenlaan 200B, B-3001 Leuven, Belgium

E-mail address: wim.veys@wis.kuleuven.ac.be

[^0]: 1991 Mathematics Subject Classification. 14B05 14E15 32S50 (32S45).
 Key words and phrases. Singularity invariant, topological zeta function.
 The second author is a Postdoctoral Fellow of the Belgian National Fund for Scientific Research (F.W.O.)

