ON THE POLES OF MAXIMAL ORDER
OF THE TOPOLOGICAL ZETA FUNCTION

ANN LAEREMANS AND WILLEM VEYS

ABsTRACT. The global and local topological zeta functions are singularity invariants asso-
ciated to a polynomial f and its germ at 0, respectively. By definition these zeta functions
are rational functions in one variable and their poles are negative rational numbers. In
this paper we study their poles of maximal possible order. When f is non degenerate
with respect to its Newton polyhedron we prove that its local topological zeta function
has at most one such pole, in which case it is also the largest pole; concerning the global
zeta function we give a similar result. Moreover for any f we show that poles of maximal
possible order are always of the form —1/N with N a positive integer.

INTRODUCTION

(0.1) To f € Clzy,...,z,] is associated a singularity invariant, called the topological
zeta function of f, which is expressed as follows in terms of an embedded resolution of
f71{0} € A™. For simplicity of notation suppose that f(0) = 0.

Let h: X — A™ be an embedded resolution of f~1{0}. We denote by F;,i € S, the
irreducible components of h=1(f~1{0}), and by N; and v; — 1 the multiplicities of E;
in the divisor on X of f o h and h*(dzy A --- A dx,,), respectively. The (N;,v;),i € S,
are called the numerical data of the resolution (X,h). For I C T we denote also
EI = miEIEi and E? = E[ \ (ijTEj)'

Definition. Let x(:) denote the topological Euler—Poincaré characteristic. To f and
d € N\ {0} one associates the rational functions in one variable

Zion(5) = Z0) = Y x(E) [ ~—

Ice el NiS + v;
Viel:d|N;
and 1
d [e]
Ztop,O(S) = Z'G(OI)):O(S) = Z X(Ef O h 1{0}) H N;s + v
ICS ier " ’
Viel:d|N;
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which are both called the topological zeta function of f, more precisely the global and
local one, respectively. They are invariants of f and the germ of f at 0, respectively,
and were introduced by Denef and Loeser in [DL1]. The remarkable fact that these
expressions do not depend on the chosen resolution was originally proved by writing
them as a certain limit of Igusa’s local zeta functions [DL1]; it also follows by considering
the topological zeta function as a specialization of the recently introduced motivic Igusa
zeta functions, see [DL2, (2.3)].

(0.2) In particular the poles of the topological zeta function of f are interesting
invariants, and various conjectures relate them to the eigenvalues of local monodromy
of f, see for example [DL1, Ve3]. In this paper we study the poles of maximal possible
order, i.e. of order n. Concerning the local topological zeta function there is the

following conjecture of the second author, which he proved for n = 2 in [Ve2, Theorem
4.2].

Conjecture. (i) Ziop,0(s) has at most one pole of order n, and
(ii) if Ziop0(s) has in § a pole of order n, then § is the largest pole of Zip (s).

Remark that in any case the largest candidate pole of Zt(;;)),o(s) is just the so—called log
canonical threshold of f at 0, denoted co(f), see [K]. We have that —co(f) is the largest
root of the Bernstein—Sato polynomial of f, and if 0 is an isolated singularity of f=1{0},

then co(f) = min{1, ar}, where af is Arnold’s complex singularity index [AVG].

(0.3) We will prove that the conjecture above is true for polynomials f which are
non degenerate with respect to their Newton polyhedron at the origin. Remark that
‘almost all’ polynomials satisfy this property. And concerning the global topological
zeta function we obtain the following.

Proposition. Let f be non degenerate with respect to its global Newton polyhedron.
Then

(1) Ziop(s) has at most 2 poles of order n, and

(ii) if Ziop,0(s) has in § a pole of order n, then § = —1 or § is the largest pole of Ziqp(s).

Here we should remark that this last result is specific for non degenerate polynomials;
it is not true for general f.

(0.4) Finally we show that any pole of order n of Ziop 0(s) or Ziop(s) must be of
the form —1/N with N € N\ {0}. This is an immediate corollary of the following
geometrical result.

Theorem. We use the notation of (0.1). Suppose that E;,i € I, are n different com-
ponents of h=*(f~1{0}), such that N;erE; # 0 and §- =t for all i € I; then t = 3 for
some N € N\ {0}.



1. FORMULAS FOR NON DEGENERATE POLYNOMIALS

(1.1) Let f € Clz1,...,z,] be a non-constant polynomial satisfying f(0) = 0. We
write f =), c\n apz®, where k = (ki1,...,k,) and 2% = x’fl +...-xFn: then the support
of f is supp f = {k € N"|aj, # 0}. The global Newton polyhedron I'y; of f is the convex
hull of supp f, and the Newton polyhedron I'y of f at the origin is the convex hull of
g +RY. (R = {r €Rjz >0}.)

1.2. Definition. One says that f is non degenerate with respect to I'y; and Ty if for
every face 7 of I'g; (including 7 = T'y;) and every compact face 7 of 'y, respectively,
the polynomials fr := >, apz® and Of,/0x;,1 < i < n, have no common zeroes in

(C\{op)™.

Roughly speaking, almost all polynomials are non degenerate with respect to I'y; or I'g
[AVG, p.157].

(1.3) For a = (a1,...,a,) € R} we put N(a) := infzer, a -z, v(a) :== > ., a; and
F(a) :=={z € Tyla-z = N(a)}. It is a fact that all F(a),a # 0, are faces of I'y. One
associates to a face 7 of I'y a (dual) cone 7° C R"™, defined as the closure in R" of
{a € R} |F(a) = 7}. It is a rational convex cone, with vertex the origin, of dimension
n —dim7. In particular if dim 7 = n — 1 then 7° is a ray, say 7° = aR" for some
a € N and then the equation of the hyperplane through 7 is a - = N(a). Also the
map 7 — 7° is inclusion-reversing.

Finally we recall that faces of dimension n — 1 of I'y are called facets and that every
face 7 with dim 7 < m is the intersection of the facets that contain 7.

(1.4) We will recall below a formula for the topological zeta function when f is non
degenerate. We first describe the terms that appear in this formula. Let C' be a rational
simplicial cone in R} (with vertex the origin); so it is of the form C' = Ry a;+- - -+Ry ay,

where aq,...,a, € N* are linearly independent over R and are primitive, i.e. with
relatively prime components. We associate to C' (and T'y) the rational function
mult(C'
JC(S) = ( )

[T,_ (N (as)s + v(a;))

where mult(C') € N\ {0} is the multiplicity of C, whose definition is not important for
our results, but is given for completeness in 1.8 below.

1.5. Definition. To an arbitrary face T of T'y we associate a rational function J.(s)
as follows.

(i) If T =Ty we put J,(s) := 1.

(ii) Otherwise choose a decomposition 7° = U]_,C; of 7° in rational simplicial cones
C; of dimension ¢ = dim7° such that dim(C; N Cj) < £ if i # j. Then put J.(s) :=

Zgzl JCi (S)

As shown in [DL1, Lemme 5.1.1] the function J(s) above does not depend on the chosen
decomposition of 7° and is thus well defined, and moreover the poles of .J,(s) are of the
form —v(a)/N(a), where a is orthogonal to a facet of I'y containing 7.



1.6. Theorem. [DLI1, Théoréme 5.3] (i) If f is non degenerate with respect to Iy,
then

Zt(iz,,o(s) = Z Jr(s) + (s i 1) Z (=1)4™m7(dim 7)! Vol(7)J,(s)

T vertex of I'g T compact
face of Ty,
dim 72>1

and
Zi9o(s) = > (=17 (dim7)!Vol(r)J,(s) ifd > 1,
Eace of Iy,
dIN(7°)
where N (7°) := ledgeronne N(a), and where Vol(1) € N\ {0} is defined in 1.8 below.
(ii) If f is non degenerate with respect to I'y;, then there are analogous formulas for

z) (s) and 7

top top(8),d > 1, where the summation now runs over all faces of T'g.

Again we will not need the concrete meaning of Vol(7) for our results.

(1.7) Let to = min{t € R|(¢,...,t) € o} and let 79 denote the face of I'y that

contains (tg,...,to) in its relative interior. One can verify that sg := —-- is the largest

to
candidate—pole of Zt((()ig,O(S) or Zt(gl))(s), besides —1 when d = 1.

(1.8) For the interested reader we recall here the definitions of the volume of a face
and the multiplicity of a cone. Let « be the convex hull in R® of a part of Z"™. We
denote by w, the volume form on Aff(y), the affine space spanned by +, such that the
parallelepiped spanned by a lattice-basis of Z"N Aff(+y) has volume 1.

(i) Let 7 be a face of I'y. If dim 7 = 0 we put Vol(7) := 1; otherwise we define Vol(r)
as the volume of 7 NIy for the volume form w,. (When 7 is compact then 7Ny = 7.)

(i1) Let C be the /~dimensional rational simplicial cone in R} given by C' = R a; +
-+-+ R ag, where all a; are primitive. Then mult(C) is the volume of the parallelepiped
spanned by ay,...,ap for the volume form we.

2. DETERMINATION OF THE POLES OF MAXIMAL ORDER

Still using the notation of §1, we first derive some convex—geometric lemmas.

Lemma 2.1. Let V be a vertex of 'y such that Jy (s) has in § a pole of order n. Then
V= (=L o).

s

Proof. We choose a decomposition of the dual cone V° as described in Definition 1.5,
and moreover without introducing new rays. This is always possible [DS, Lemme 2.3].
Take a simplicial cone C in this decomposition such that Jo(s) has in § a pole of order

n, and let &1,...,&, be the primitive generators of C in N*. By the construction of
the chosen decomposition we have that F(&1),...,F(&,) are facets of I'y containing
V. Since Jc(s) has in § a pole of order n, we have moreover that § = — K,((%v)) for



? 7
A= {( )|t € R} the diagonal, we thus obtain that H; N A = ( %, .., —z) for
i=1,...,n. From V =N, F(&) we then derive

VAA =M (FE)NA) € NP (H; NA) = {(—2, ..., — 2y,

S S

andso V =(—1%,...,—3). O

Lemma 2.2. Let v be a 1-dimensional face of I'y such that J,(s) has in —1 a pole of
order n — 1. Then (1,...,1) is contained in the affine line L., through .

Proof. As in the proof of Lemma 2.1 we choose a decomposition of v° as in Definition
1.5 without introducing new rays. Take a cone C' in the decomposition such that Jo(s)
has in —1 a pole of order n — 1, and let &;,...,&,_1 be the primitive generators of C
in N*. Again F(&;), ..., F(&,—1) are facets of Iy containing v, and here v(§;) = N(&;)
for i = 1,...,mn — 1. Letting H; denote the affine hyperplane through F(¢;), we thus
have that (1,...,1) € H; fori =1,...,n — 1. Since v = ﬂ?z_llF(&) and consequently
L., = N?-'H; we obtain that (1,...,1) € L,. O

Lemma 2.3. Let v be a 1-dimensional compact face of I'y such that the affine line L.,
through v contains (1,...,1). Then (1,...,1) € ~.

Proof. Let Vi and Vs denote the vertices of . Let Fi,..., F,_1 be facets of I'y such
that v = NP{'F; and let & € N? be such that F(¢) = F; for i = 1,...,n — 1. Since
(1,...,1) € L, we have that v(§) = N(§) fori =1,...,n — 1. Let now t € R be such
that (1,...,1) =tV; 4+ (1 — ¢)Va; it suffices to prove that 0 <¢ < 1.

We assume that V3 # (1,...,1) (the other case being trivial). We will denote the
jth coordinate of @ € N* by (a);. Suppose that Vi € (1,...,1) + R’; then there
exists some j in {1,...,n} such that (V1); > 1. It then follows from V; € v and
v(&) = N(&) = & - Vi that (&); = 0 for ¢« = 1,...,n — 1. This contradicts the
compactness of y. Hence V; & (1,...,1) +R}.

Let then j € {1,...,n} be such that (V1); = 0. Then 1 = (1 — t)(V3);, which
immediately implies that 0 <1 —1¢ = (V % <1. O

Remark. As illustrated in Example 2.6, the condition compact in the statement of
Lemma 2.3 cannot be omitted. Because of this fact, the proof we will give for Theorem
2.4 fails when we replace Ziop 0(s) by Ziop($).

2.4. Theorem. Let f be non degenerate with respect to I'y. Then
(i) Zsop,0(s) has at most one pole of order n, and
(ii) if Ziop,0(s) has in § a pole of order n, then § is the largest pole of Zyp o($).

Proof. We will prove (ii) which immediately yields (i). So suppose that Zt(gr))’o(s) has in
s a pole of order n; then there is at least one term in the formula of Theorem 1.6 for
7(d)

bop, o(s) that has in § a pole of order n.



Suppose first that there exists a vertex V of I’y such that Jy (s) has in § a pole of
order n (and such that d|N(V°)). Then by Lemma 2.1 we must have V = (—1,...,—3);
so V =15 and § = sg.

Suppose on the other hand that there is no such vertex of I'y. Then necessarily d = 1
and § = —1 and there must exist a compact 1-dimensional face v of I'y such that J,(s)
has in —1 a pole of order n — 1. Then Lemmas 2.2 and 2.3 imply that (1,...,1) € 7,
and thus 7o C vy and sp = —1=s5. U

So we proved Conjecture 0.2 for non degenerate polynomials. Analogous arguments
yield the following result concerning the global zeta function Zi.p(s).

2.5. Proposition. Let f be non degenerate with respect to I'y;. Then
(1) Ziop(s) has at most 2 poles of order n, and
(ii) if Zyop,0(s) has in § a pole of order n, then s = —1 or § is the largest pole of

Ziop(s).

Proof. We only have to prove (ii). Suppose that Zt(gr))(s) has in § # —1 a pole of order
n. Then there is a vertex V of 'y such that Jy (s) has in § a pole of order n (and such
that d|N(V°)). By Lemma 2.1 we have that V = (—1,...,—1) and so V = 7y and
5= S0. U

2.6. Example. Take f = 2%y + oty + zy* + 29° = xy(zvy + 22 + 3 + y*). Its Newton
polyhedron I'y and the diagram of dual cones associated to the faces of I'y are pictured
in Figures 1 and 2, respectively. We denoted by Vi, V5 and V3 the vertices of 'y and by
v12 and 723 its compact faces. One easily verifies that f is non degenerate with respect
to both I'g and I'y;. Theorem 1.6(i) yields

28 () = i (5) + T, (5) + v, (5)

g (C) Vol(12) Ty, () + (=1) Vol(12) T (5))
1 3 s 1
:2@+1ﬂ%+3f+®s+$2+s+1@04llws+$)
—45% +35+3

O 3(s+1)(2s+1)2°

Alternatively we can construct the minimal embedded resolution of the germ of f~{0}
at 0. It consists of 3 exceptional curves, intersecting as in Figure 3, where the dots
correspond to intersections of the exceptional divisor with the strict transform of f=1{0}.
Since the numerical data of each component of this strict transform are (1,1) we have
by definition that

1 1 0
(142 + )+ ;
s+1 4s+2 4s + 2

1



yielding (fortunately) the same result. So —31 is the only pole of order 2 and it is
indeed the largest pole. Using Theorem 1.6(ii) or by considering the (global) embedded
resolution of f~1{0} C A? one can analogously compute that
Z0(s) 725" +1285% 4 775 + 215 + 3
S) =
top 3(s+1)2(2s + 1)2 ’

which confirms Proposition 2.5.

2.7. Remark. Proposition 2.5 however is specific for non degenerate polynomials; it
is not true for arbitrary f. Ome can easily construct counterexamples where f is not
reduced, e.g. f = xy(z —1)%(y — 1)%(x — 2)3(y — 2)® with double poles for Zt(gr))(s) at
-1, —% and —%. An irreducible counterexample derived from it with the same double
poles is f = zy(x — 1)2(y — 1)%(z — 2)3(y — 2)3 + (z — y)". 777

3. POLES OF MAXIMAL ORDER ARE OF THE FORM —1/N

(3.1) From the proofs in the previous section it was already clear that when f is non
degenerate with respect to its Newton polyhedron, then a pole of order n of Zip 0(5)
or Ziop(s) must be of the form —1/N with N € N\ {0}. We will prove this in general.

We now reconsider the defining expression of the topological zeta function in (0.1)
in terms of the embedded resolution (X, k). It is obvious that if § is a pole of order n
of Ziop,0(8) Or Ziop(s), then there exist n different F;,i € I C S, such that N;erE; # 0
and § = —y;/N; for all i € I. The following result treats this situation in a slightly
more general setting.

3.2. Theorem. Let D =) . N;D; be an effective divisor on a nonsingular variety Y of
dimension n. Take an embedded resolution h : X — 'Y of D in the sense of Hironaka’s
Main Theorem II [H, page 142], and let E;,i € S, be the irreducible components of
h~!(supp D). Denote h*D =3, s N;E; and Kx =Y, s(v; — 1)E; + h*Ky. Suppose
that there exist n different E;,i € I C S, such that NyerE; # 0 and v;/N; = t for all
i€I;thent=1/N for some N € N\ {0}.

Proof. If at least one F;,¢ € I, is an irreducible component of the strict transform of
D, then clearly t = 1/N;. So from now on we suppose that all E;,i € I, are exceptional
varieties.

At a certain step of the resolution process h one of the E;,¢ € I, is created as the
exceptional variety of a blowing—up and the other ones are strict transforms of previously
created exceptional varieties. We now consider the following situation (x) of which this
‘step’ is a special case.

Let 7 : X7 — X be a blowing—up of h with centre Cy of codimension d > 2 in

Xy and exceptional variety Ey C X;. Suppose that

() there exists a point P € E; belonging to n different exceptional varieties of
(¥) h,say Pe€ Ei N EsN---NE,, where Ej is the strict transform of E; C X, for

J=2,...,n; and

(1) N = Nta; = " = N2~ =1, where the a; € Z (and such that all
N; +a; #0).



We claim that we may suppose (after renumbering) that Fs,...,Eq D Cy and Eg4q,
..., Ey, 2 Cy. Indeed since Cp has normal crossings with U}_,E, we can take local
parameters yi,...,y, at @ = w(P) such that Cj is given locally at Q by y; = -+ =
yq = 0 and the Ey,2 < ¢ < d, by some y; = 0. Certainly at most d of the E, can contain
Cy, but since P € E, for all £ in fact at most d — 1 of them can satisfy Ey D Cy. On
the other hand it is also clear that at most n — d of the E, can satisfy Ey,  Cy. This
proves the claim.
So we are left with two possibilities :

(1) no other exceptional variety of h contains Cj, or (say)
(2) also En+1 D Cy.

We will show that then

(1’) t = 1/N for some N € N\ {0}, and

) — Vn+1
(2) t = Nidar, for some anyy € Z,

respectively. Recall the well-known (and easily derived) equalities
d d
N1:ZN,'—|—[L<—|—N”+1> and V1:Z(Vi_1)+d<+yn+l_1>v

1=2 1=2
where p is the multiplicity of the generic point of Cy on the strict transform of D on
Xy, and in case (1) and (2) the terms within brackets do not and do occur, respectively.
So

121 Z?:z vit+1l<+vpyr —1>

t = =
d d ’
Nitar ¥, (Ni+ @) + (1 + a1 = 2 i) < +Nagr >
which implies by the trivial Lemma 3.3 below that
= 1 < +l/n+]_ —1 >
= v :

ptar =325 a; < +Npyy >
This is what we claimed in (1’) and (27).

Now we can prove the theorem by consecutive applications of our study of the situ-
ation (x). Start with the blowing—up of h where N;crE; is created. In case (1) we are
done. In case (2) we obtain (using the notation above) @ € ﬂ?;LZIEj which induces by
(2’) a new situation (x). We can now repeat the same arguments untill, by finiteness of
the resolution, we encounter a case (1). O

3.3. Lemma. Let k > 2 and take b;,c; € N\ {0} fori=1,...,k+ 1. If’c’—i == g—:
by _ bat-+br+brya b1 _ bkt
and Ci T cattcp Ry’ then Ci T Ch41

3.4. Corollary. Any pole of order n of Zyop, o(s) or Zyop(s) is of the form —1/N with
N e N\ {0}.

3.5. Remark. Theorem 3.2 also implies that any (complex) pole of order n of Igusa’s
local zeta function, associated to a polynomial in n variables over a p—adic field, has
real part —1/N with N € N\ {0}. See for example [I,D] for this concept. An analogous
result follows for the motivic Igusa zeta functions of [DL2] when one defines in a natural
way a pole and its order for these zeta functions.
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