
MORE CONGRUENCES FOR NUMERICALDATA OF AN EMBEDDED RESOLUTIONWillem Veys�Abstract. To an arbitrary intersection of exceptional varieties of an embedded resolutionwe associate a �nite number of congruences between naturally occurring multiplicities. Thistheory generalizes previous results concerning just one exceptional variety. Moreover wedescribe precise equalities which imply the congruences and we give some applications on thepoles of Igusa's local zeta function.
Introduction(0.1) Let k be an algebraically closed �eld of characteristic zero and f 2 k[x1; : : : ; xn].Let h : X ! A n be an embedded resolution of singularities of f�1f0g, considered as analgebraic set in a�ne space A n . We suppose that this resolution (X; h) is constructed bymeans of consecutive blowing{ups, according to Hironaka's theorem [H].We denote by Ei; i 2 S, the irreducible components of h�1(f�1f0g) and by Ni themultiplicity of Ei in the divisor of f � h.(0.2) Fix one exceptional variety Ej. When n = 2 the following congruence is now wellknown. Say Ej intersects k times other components E1; : : : ; Ek. Then(�) kXi=1 Ni � 0 mod Nj ;and more preciselyPki=1Ni = Nj(1+�), where � is the number of times that a point of Ejoccurs as centre of some blowing{up during the resolution process. The original proof foranalytically irreducible f(x1; x2) was derived by consecutive work of Strauss [S], Meuser[M] and Igusa [I2], and for general f(x1; x2) by Loeser [L].1991 Mathematics Subject Classi�cation. 14E15 32S45 14B05 (11S80 14G20).Key words and phrases. Resolution of singularities, numerical data, Igusa's local zeta function.�Postdoctoral Fellow of the Belgian National Fund for Scienti�c Research (N.F.W.O.)1



(0.3) When n is arbitrary we developed in [V2] a general theory of congruences, extending(�). The essential feature of dimension n > 3 is that Ej is subject to a `historical evolution'during the resolution process. Let Ej � X be the strict transform in X of the variety E0j ,created at some stage of the resolution process h as exceptional variety of a blowing{up.Then in general Ej is not isomorphic to E0j ; more precisely Ej itself is obtained from E0jby a sequence of blowing{ups. (When n = 2 this phenomenon does not occur for thenE0j �= Ej �= P1.)In fact we associated a �nite number of congruences modNj to Ej ; there are BasicCongruences associated to its creation as E0j in the resolution process, generalizing (�),and an Additional Congruence associated to each blowing{up of the sequence that producesEj out of E0j .(0.4) In this paper we will generalize this theory further to congruences `in arbitrarycodimension'. We �rst give an example.When n = 3 let Ej1 and Ej2 be two intersecting exceptional surfaces and suppose thatthe curve D := Ej1 \ Ej2 is irreducible and projective. Say D intersects k times othercomponents E1; : : : ; Ek. ThenkXi=1Ni � 0 mod gcd(Nj1 ; Nj2) ;where gcd denotes the greatest common divisor. This `codimension 2'{congruence cannotbe derived as a consequence of the ordinary `codimension 1'{congruences of [V2]. In factthere is an explicit equalityPki=1Ni+�2Nj1 +�1Nj2 = 0, where �` is the self{intersectionnumber of D on Ej` .(0.5) We will associate to each irreducible component D of a nonempty intersection of ex-ceptional varieties \j2JEj a �nite number of congruences mod gcdj2J Nj , and moreoverwe will describe equalities from which they can be obtained. We want to remark herethat the congruences can be proved directly in an elegant way without reference to theequalities. ( For jJ j = 1 this was not mentioned explicitly in [V2].)We now state these congruences more precisely. In general the variety D goes througha historical evolution during the resolution process : it is obtained by a �nite successionof blowing{ups D0 �1 D1 �2 : : :Di�1 �i Di : : : �m�1 Dm�1 �m Dm = Dwith irreducible nonsingular centre Zi�1 � Di�1 and exceptional variety Ci � Di fori = 1; : : : ;m. The variety D0 is created at some step of the global resolution process (infact at the creation of the `last' of the Ej ; j 2 J).There are two kinds of intersections of D with components E`; ` 62 J . We have the stricttransforms in D of the exceptional varieties C1; : : : ; Cm; and also the strict transforms inD of certain varieties Ck; k 2 T 0, (of codimension one) in D0. We have moreover thatthe strict transform of each Ci; i 2 T 0 [ f1; : : : ;mg, is (an irreducible component of) theintersection of D with exactly one component of h�1(f�1f0g); slightly abusing notationlet this component have multiplicity Ni in the divisor of f � h.2



Theorem. Set NJ := gcdj2J Nj . Using the notation above we have for i = 0; : : : ;m� 1that(Congruence A) Ni+1 � Xk2T 0[f1;:::;ig�kNk mod NJ ;where �k is the multiplicity of the generic point of Zi on (the strict transform in Di of)Ck. We have also(Congruence B) Xk2T 0NkCk = 0 in PicD0NJ PicD0 :Whenever D0 is complete, Congruence B induces a �nite number of ordinary congruencesmodNJ .(0.6) For i 2 S let �i�1 be the multiplicity of Ei in the divisor of h�(dx1^� � �^dxn) on X.Classically the (Ni; �i); i 2 S, are called the numerical data of the resolution (X; h). Thenumbers� �iNi ; i 2 S, form a complete list of candidate poles for Igusa's local zeta function off (when f is de�ned over a p{adic �eld). We will mention a straightforward generalizationto arbitrary codimension of our `codimension one'{theory of relations between numericaldata [V1], which enables us to give some applications of the congruences of this paperconcerning the poles of Igusa's local zeta function.(0.7) The plan of the exposition is as follows. In x1 we recall brie
y the important aspectsof an embedded resolution and in x2 we prove the Congruences A and B. Their underlyingequalities are studied separately in x3; this part is a bit technical and is not needed forthe applications concerning Igusa's local zeta function. After developing the more generalrelations between numerical data in x4, those applications are treated in x5.1. Embedded resolution(1.1) Let k be an algebraically closed �eld of characteristic zero and let f 2 k[x1; : : : ; xn].Let Y = f�1f0g denote the zero set of f in a�ne space A n . We exclude the trivial casef 2 k, so Y is a hypersurface in A n .De�nition. An embedded resolution (X; h) for Y � A n consists of a nonsingular varietyX and a proper birational morphism h : X ! A n such that the restriction hjXnh�1Yis an isomorphism and h�1Y has normal crossings in X. In particular the irreduciblecomponents of h�1Y are nonsingular hypersurfaces.Remember that a reduced hypersurface E of X has normal crossings if for all x 2 Xthere exists a regular system of parameters t1; : : : ; tn in the local ring OX;x of X at x suchthat the ideal in OX;x of each irreducible component of E containing x is generated by one3



of the ti. (Analytically one can think of E being locally a union of coordinate hyperplanes.)Also E is said to have normal crossings with a (necessarily smooth) subvariety D of X iffor all x 2 D the ideal of D in OX;x is generated by some of the ti.(1.2) Hironaka [H] constructed an embedded resolution as a �nite composition of blowing{ups. Recall that if g : ~Z �! Z is the blowing{up of the variety Z with centre the closedsubset B of Z, then the exceptional divisor E = g�1B is everywhere of codimension oneon ~Z, and the restriction gj ~ZnE is an isomorphism. For any subvariety V of Z the closureof g�1(V n B) in ~Z is called the strict transform of V by g. If Z and B are nonsingularvarieties, then the same is true for ~Z and E.More precisely Hironaka constructed a resolution (X; h) as a suitable composition ofblowing{upsA n = X0 g1 � X1 g2 � : : : Xi gi+1 ��� Xi+1 : : : gr�1 ��� Xr�1 gr � Xr = Xwith irreducible nonsingular centre Bi � Xi; 0 6 i < r, such that codim(Bi; Xi) > 2.Moreover each Bi is contained in the (repeated) strict transform of Y in Xi, and thereduced hypersurface, consisting of the (repeated) strict transforms inXi of the exceptionalvarieties of g1; : : : ; gi, has normal crossings with Bi.Finally h�1Y = (gr � � � � � g1)�1(Y ) has thus normal crossings in X; its irreducible com-ponents are the strict transforms of the irreducible components of Y and the exceptionalvarieties of h, being the strict transforms in X of the exceptional varieties of g1; : : : ; gr.(1.3) Let now D � Xi be any variety which intersects Bi transversely everywhere (and isnot contained in Bi) and ~D � Xi+1 its strict transform by gi+1. We have the followingimportant fact (see e.g. [GH, page 605] for the �rst claim; the second is not di�cult toverify).Proposition. The restriction gi+1 j ~D : ~D �! D is the blowing{up of D with (nonsingular)centre Bi \ D. Moreover the exceptional divisor of gi+1 j ~D is the intersection of ~D withthe exceptional divisor of gi+1.Note that Bi \ D can eventually be reducible. The total blow{up of D with centreBi \D can then be considered as the result of consecutive blowing{ups of D with centresthe irreducible components of Bi \D, which are necessarily disjoint.We will use this proposition intensively for D a nonempty intersection of exceptionalvarieties of h; because of the normal crossings property the transversality condition isindeed satis�ed.(1.4) From now on we will denote the irreducible components of h�1Y by Ei; i 2 S; andtheir multiplicity in the divisor of f � h by Ni; alternatively (f � h) = Pi2S NiEi. Wealso set EI := \i2IEi for I � S. While working with the resolution process h we will ingeneral use the same notation for Ei, when created as exceptional variety, and for its stricttransforms in any Xk. 4



2. Self{intersection divisors and congruences(2.1) From now on we �x intersecting exceptional varieties Ej; j 2 J , and an irreduciblecomponent D of EJ . Remark that because of the normal crossings property D is nonsin-gular and disjoint from eventual other components of EJ , and that codim(D;X) = jJ j.Let Ci; i 2 T , denote all the irreducible components of the intersections D \ E`; ` 62 J .Set also NJ := gcdj2J Nj . Our starting point is the following observation.2.2. Proposition. For j 2 J we denote by D<j> the self{intersection divisor of D onEJnfjg, considered as an element of PicD. ThenXj2J NjD<j> +Xi2T NiCi = 0 in PicD :Proof. Denote by � : D ,! X the natural embedding and consider for each j 2 J thedecomposition D �j,! EJnfjg �j,! X of �. Since Pi2S NiEi = 0 in PicX we have that(1) Xi2S Ni��Ei = 0 in PicD:Now ��(Pi 62J NiEi) = Pi2T NiCi and for each j 2 J we have that ��Ej = ��j (��jEj) =��j (EJ) = ��j (D) = D<j>. Substituting all this in (1) yields the stated expression. �2.3. Corollary. Pi2T NiCi = 0 in PicDNJ PicD .2.4. Corollary. Let D be a projective curve. Then (taking degrees)Xi2T Ni � 0 mod NJ ;and more precisely, if �j denotes the self{intersection number of D on EJnfjg, thenPj2J �jNj +Pi2T Ni = 0.2.5. Remark. Proposition 2.2 and its corollaries are in fact valid in a more general context.(i) They are true for any embedded resolution of Y , i.e. not necessarily obtained �a laHironaka.(ii) The Ej ; j 2 J , can be arbitrary (intersecting) components of h�1Y . Now forexample when f is irreducible and the strict transform of Y is one of the Ej; j 2 J , thenNJ = 1 and the congruences are meaningless. See (2.8) for an application of the equalities.(2.6) We now �x the notation for our general congruences and equalities. Using Proposition1.3 the following is not di�cult to verify. 5



(i) The variety D is the strict transform in X of a nonsingular variety D0, createdat some step of the global resolution process. (In fact D0 appears in this process at thecreation of the `last' of the Ej; j 2 J , as exceptional variety of a blowing{up of h; and moreprecisely D0 is a component of the intersection of this variety with the other Ej; j 2 J , atthat stage of h.)(ii) So D itself is obtained from D0 by a �nite succession of blowing-upsD0 �1 D1 �2 : : :Di�1 �i Di : : : �m�1 Dm�1 �m Dm = Dwith irreducible nonsingular centre Zi�1 � Di�1 and exceptional variety Ci � Di fori = 1; : : : ;m. In fact Ci is (a component of) the intersection of Di with some globalexceptional variety E` at the stage where E` is created.(iii) For i = 1; : : : ;m and for any variety V � Dj ; 0 6 j < i, let the strict transform ofV in Di (by �i � � � � � �j+1) be denoted by V (i).Let Ci; i 2 T , be the intersections of D with components E`; ` 62 J . They consist of thestrict transforms C(m)1 ; : : : ; C(m)m in D of the exceptional varieties C1; : : : ; Cm and of thestrict transforms C(m)i in D of varieties Ci; i 2 T 0, (of codimension one) in D0. Those lastvarieties are the intersections of D0 with components E`; ` 62 J , at the stage of h whereD0 is created. (So T = T 0 [ f1; : : : ;mg.)(iv) Since [`2SE` has normal crossings in X we have for each i 2 T that C(m)i is (acomponent of) the intersection of D with exactly one component of h�1Y , di�erent fromthe Ej; j 2 J . For simplicity of notation let this component be Ei.2.7. Theorem. For i = 0; : : : ;m� 1 we have that(Congruence A) Ni+1 � Xk2T 0[f1;:::;ig�kNk mod NJ ;where �k is the multiplicity of the generic point of Zi on C(i)k . We have also that(Congruence B) Xk2T 0NkCk = 0 in PicD0NJ PicD0 :Remark. (i) Of course these congruences are only meaningful when NJ > 1.(ii) In general Congruence B thus has divisors as `coe�cients'. When Pic D0 �= Z, forexample if D0 is some projective space, Congruence B becomes an ordinary congruence.(iii) More generally, whenever D0 is complete, Congruence B induces a �nite numberof numerical congruences. For then we can consider it in NumD0NJ NumD0 , where NumD0 is thegroup of divisors on D0 modulo numerical equivalence, which is a quotient of PicD0. SinceNumD0 is a �nitely generated free abelian group we get rank (NumD0) congruences.6



Proof. Consider for a �xed i 2 f0; : : : ;m � 1g the blowing{up �i+1 : Di+1 ! Di. It isnot di�cult to verify that the classical isomorphism PicDi+1 �= ��i+1 PicDi�ZCi+1 (withinjective ��i+1) induces(2) PicDi+1NJ PicDi+1 �= ��i+1 PicDiNJ PicDi � ZNJZCi+1;where ��i+1 is still injective.Suppose now that P`2T 0[f1;:::;i+1gN`C(i+1)` = 0 in PicDi+1NJ PicDi+1 . This is equivalent toPk2T 0[f1;:::;igNk(��i+1C(i)k � �kCi+1) +Ni+1Ci+1 = 0, and using (2) we obtainXk2T 0[f1;:::;igNkC(i)k = 0 in PicDiNJ PicDiand Ni+1 = Xk2T 0[f1;:::;ig�kNk in ZNJZ :Starting from the fact that Pi2T NiC(m)i = 0 in PicDNJ PicD (Corollary 2.3) we use thearguments above consecutively for i = m � 1; : : : ; 0 to obtain the Congruences A and�nally end up with Congruence B. �For concrete varieties D0 one can make Congruence B more explicit. When D0 is aprojective space bundle over some base variety this has been done in [V2]. (When jJ j = 1then D0 is always such a bundle.)(2.8) Take n = 3 and suppose that (X; h) is the embedded resolution of an isolated singu-larity P of the irreducible surface Y . The equalities of Corollary 2.4 are useful to determinethe self{intersection numbers in the resolution graph of P 2 Y , when an explicit embeddedresolution of Y � A 3 is given.Indeed let D be (a component of) the intersection of the strict transform of Y withsome exceptional surface Ej, and let D intersect k times other exceptional surfaces, sayE1; : : : ; Ek. We want to know the self{intersection number � of D on the strict transformof Y (which is a resolution of P 2 Y ). Now Corollary 2.4 says that�j +Nj�+ kXi=1Ni = 0;where �j is the self{intersection number of D on Ej, which can very easily be computed.
7



3. Precise equalities(3.1) We keep using the notation of (2.6). The congruences in the preceding section werecompletely determined by the con�guration of the Ci; i 2 T , on D; or equivalently of theCi; i 2 T 0, on D0. For example we did not need any information concerning how D isembedded in X or in the EJ 0 ; J 0 � J , or analogously for D0. In my opinion precisely thisfeature makes these congruences attracting and useful for applications. See x5.The underlying equalities for these congruences however depend rather intensively onknowledge about the global resolution process. We will derive them from the key Lemma3.3, for which we now introduce the data.(3.2) We �x some blowing{up g with centre B of the global resolution process h, occurringafter the creation of D0 (and thus of all the Ej; j 2 J). We denote the strict transform ofD0 right before and after g respectively by Dy and Dz and the restriction of g to Dz by �.So � : Dz ! Dy itself is a blowing{up with (eventually reducible) centre B\Dy. (We maysuppose that B\Dy 6= ;, otherwise nothing relevant happens.) Analogously we denote foreach J 0 � J the `ancesters' of EJ 0 � X before and after g respectively by EyJ 0 � Xy andEzJ 0 � Xz. For each j 2 J we thus have the following diagram.(3) Dz ����! EzJnfjg ����! Xz�??y ??y ??ygDy ����! EyJnfjg ����! XyLet alsoDy<j> denote the self{intersection divisor ofDy onEyJnfjg, considered as an elementof PicDy, and Dz<j> the analogous element of PicDz.3.3. Lemma. We use the notation of (3.2). Let Cze ; e 2 E , be the (necessarily disjoint)irreducible components of the exceptional divisor of �, and Czi ; i 2 I, all other irreduciblecomponents of the intersection of Dz with components E`; ` 62 J , in Xz.First case : codim(B \Dy; Dy) > 2.So for each e 2 E we have that Ze := �(Cze) is of codimension at least 2 in Dy and theirreducible components of the intersections of Dy with the E`; ` 62 J , in Xy are preciselythe Cyi := �(Czi ); i 2 I.If Pj2J ajDz<j> +P`2I[E a`C z̀ = 0 in PicDz, then(i) Xj2J ajDyj +Xi2I aiCyi = 0 in PicDy; and(ii) ae =Xi2I �(e)i ai +Xj2J �jaj for all e 2 E ;8



where �(e)i is the multiplicity of the generic point of Ze on Cyi , and �j = 1 if B � Ej and�j = 0 if B 6� Ej.Second case : codim(B \Dy; Dy) = 1.So � : Dz ! Dy is an isomorphism and the irreducible components of the intersections ofDy with the E`; ` 62 J , in Xy are precisely the C ỳ := �(C ỳ); ` 2 I [ E .If Pj2J ajDz<j> +P`2I[E a`C z̀ = 0 in PicDz, then(iii) Xj2J ajDy<j> +Xi2I aiCyi +Xe2E(ae �Xj2J �jaj)Cye = 0 in PicDy:Proof. We �rst show for each j 2 J that in PicDz(4) Dz<j> = ��Dy<j> � �jXe2E Cze :Consider the natural embeddings �y : Dy 7! Xy and �z : Dz 7! Xz in the diagram (3) of(3.2) and let Ez be the exceptional divisor of g in Xz. Then as in the proof of Proposition2.2 we have that Dy<j> = ��yEyj and Dz<j> = ��zEzj . SoDz<j> = ��z(g�Eyj � �jEz) = ����yEyj � �j��zEz = ��Dy<j> � �jXe2E Cze :First case. Substituting (4) and the identities ��Cyi = Czi +Pe2E �(e)i Cze ; i 2 I; in thegiven expression yieldsXj2J aj(��Dy<j> � �jXe2E Cze) +Xi2I ai(��Cyi �Xe2E �(e)i Cze) +Xe2E aeCze = 0 in PicDz;which is equivalent to��(Xj2J ajDy<j> +Xi2I aiCyi ) +Xe2E(ae �Xi2I �(e)i ai �Xj2J �jaj)Cze = 0 :Now since Pic Dz �= �� Pic Dy � (�e2EZCze), where �� is injective, we obtain the statedresults.Second case. Now substituting (4) and ��Cye = Cze ; ` 2 I [E , in the given expression yieldsXj2J aj(��Dy<j> � �jXe2E ��Cye) +Xi2I ai��Cyi +Xe2E ae��Cye = 0 in PicDz;which clearly implies the stated expression in PicDy. �9



3.4. Theorem. We use the notation of (2.6).(A) Fix i 2 f0; : : : ;m � 1g. Let B denote the centre of the global blowing{up in theresolution process h by which Ci+1 is created (as irreducible component of the intersectionwith the global exceptional variety) and set �j = 1 if B � Ej and �j = 0 if B 6� Ej forj 2 J . For all k 2 T 0 [ f1; : : : ; i + 1g and j 2 J let m<j>k be the number of centresB` of global blowing{ups in the subsequent stages of the resolution process that satisfyC(>i+1)k � B` � Ej . ThenNi+1 = Xk2T 0[f1;:::;ig�kNk +Xj2J(m<j>i+1 � Xk2T 0[f1;:::;ig�km<j>k + �j)Nj ;where �k is the multiplicity of the generic point of Zi on C(i)k .(B) For all k 2 T 0 and j 2 J let m<j>k be the number of centres B` of global blowing{upsin stages of the resolution process h after the creation of D0 that satisfy C(>0)k � B` � Ej.Then Xk2T 0NkCk =Xj2J Nj(Xk2T 0m<j>k Ck �D0<j>) in PicD0;where D0<j> 2 PicD0 denotes the self{intersection divisor of D0 on the intersection of theE`; ` 2 J n fjg, at the stage where D0 is created.Proof. (A) For simplicity of notation we will suppose that Ci+1 is exactly the intersectionof the global exceptional variety associated to B with the strict transform of D0; so thisstrict transform may be identi�ed with Di+1. The general case is entirely similar.For i = 0; : : : ;m we denote by D(i)<j> 2 PicDi the self{intersection divisor of Di on theintersection of the E`; ` 2 J nfjg, at the appropriate stage of the global resolution process.Starting from the equalityXk2T NkCk +Xj2J NjD(m)<j> = 0 in PicD(Proposition 2.2), consecutive applications of Lemma 3.3(i,iii) yieldXk2T 0[f1;:::;i+1g(Nk �Xj2Jm<j>k Nj)Ck +Xj2J NjD(i+1)<j> = 0 in PicDi+1:Then by Lemma 3.3(ii) we have thatNi+1 �Xj2Jm<j>i+1 Nj = Xk2T 0[f1;:::;ig�k(Nk �Xj2Jm<j>k Nj) +Xj2J �jNj ;which is equivalent to the stated expression for Ni+1.10



(B) Further applications of Lemma 3.3(i,iii) �nally yieldXk2T 0(Nk �Xj2Jm<j>k Nj)Ck +Xj2J NjD(0)<j> = 0 in PicD0: �Caution. The m<j>k in (A) depend on the chosen i 2 f0; : : : ;m� 1g.(3.5) We can extend all previously obtained results to the following situation. Insteadof the polynomial function f on A n we can consider in (1.1) any nonsingular variety Aand any rational function f on A. Let now Y denote the support of the divisor of f , themap h : X ! A an embedded resolution of Y � A, and again Ei; i 2 S, the irreduciblecomponents of h�1Y with multiplicity Ni in the divisor of f � h.The essential di�erence is now that the Ni; i 2 S, can also be negative and eventuallyeven zero. This however does not cause any trouble. Of course when NJ = 0 a congruencemod NJ becomes an equality.4. Relations between numerical data in any codimension(4.1) We now introduce besides the Ni; i 2 S, other invariants of the embedded resolution(X; h) for Y � A n . For i 2 S let �i � 1 be the multiplicity of Ei in the divisor of��(dx1 ^ � � � ^ dxn) on X; alternatively the canonical divisor on X is Pi2S(�i � 1)Ei.Remark that �i = 1 for any irreducible component of the strict transform of Y . Classicallythe (Ni; �i); i 2 S, are called the numerical data of the resolution (X; h).The rational numbers � �iNi ; i 2 S, are important because they form an exhaustive list ofcandidate poles for certain zeta functions associated to f , see x5. In particular a nonemptyintersection EI for which all �iNi ; i 2 I, are equal induces in general a candidate pole oforder jIj.(4.2) We now �x a nonempty intersection EJ of exceptional varieties such that s0 = � �jNjfor all j 2 J , and an irreducible component D of EJ . Let Ci; i 2 T , still denote all theirreducible components of the intersections D \ E`; ` 62 J . Remember that each Ci; i 2 T ,is the intersection with D of exactly one component of h�1Y ; slightly abusing notation welet this component have numerical data (Ni; �i) and we denote �i := �i + s0Ni.These numbers �i occur naturally in the expression for the `residue' of the candidatepole s0 for the zeta functions mentioned above; see x5. When jJ j = 1 we developed in[V1] a general theory of linear relations between the �i; i 2 T . We now present shortly astraightforward generalization when EJ is of arbitrary codimension.In the sequel for a nonsingular variety V we denote by KV its canonical divisor.11



4.3. Proposition. KD =Pi2T (�i � 1)Ci in PicD 
 Q .Proof. By de�nition of the numerical data we have that KX = P`2S(�` � 1)E` andP`2S N`E` = 0 in PicX, and consequentlyKX = X̀2S(�` � 1)E` + s0X̀2SN`E` = �Xj2J Ej + X̀62J(�` + s0N` � 1)E`in PicX 
 Q . This implies the stated expression after applying jJ j times the adjunctionformula, or at once by [F, Example 3.2.12]. �Example. When D is a projective curve of genus g we obtain the relation 2g � 2 =Pi2T (�i � 1).Remark. Proposition 4.3 is valid for any embedded resolution, not necessarily �a la Hironaka.(4.4) When dimD > 2 we obtain a �nite number of relations by analyzing as before thehistorical evolution of D.Theorem. We use the notation of (2.6). For i = 0; : : : ;m� 1 we have that(Relation A) �i+1 = Xk2T 0[f1;:::;ig�k(�k � 1) + ri ;where �k is the multiplicity of the generic point of Zi on C(i)k , and ri = codim(Zi; Di). Wehave also(Relation B) KD0 = Xk2T 0(�k � 1)Ck in PicD0 
 Q :Idea of the proof. It is quite analogous to the proof of Theorem 2.7 starting now fromProposition 4.3. Investigating `backwards' the evolution of the canonical divisors KDi andusing the identities KDi+1 = ��i+1KDi + (ri � 1)Ci+1 we derive for i = m� 1; : : : ; 0 thatKDi = Xk2T 0[f1;:::;ig(�k � 1)Ck in PicDi 
 Q ;and as a bonus we obtain the Relations A. See [V1] for the complete proof of the casejJ j = 1, which is in fact also valid in the general case. �(4.5) For concrete varieties D0 we can make Relation B more explicit. For example whenD0 �= Pm then it becomes Xk2T dk(�k � 1) +m+ 1 = 0 ;where dk is the degree of the hypersurface Ck. See [V1] when D0 is an arbitrary projectivespace bundle. 12



5. Poles of zeta functions(5.1) Let K be a �nite extension of the �eld Qp of p{adic numbers, R the valuation ringof K, P the maximal ideal of R, and �K = R=P the residue �eld with cardinality q. Forz 2 K we denote by ord z 2 Z [ f+1g its valuation, jzj = q� ord z its absolute value, andac(z) = z�� ord z its angular component, where � is a �xed uniformizing parameter for R.Let f(x) 2 K[x] = K[x1; : : : ; xn] and { : R� ! C � a character of R�, the group ofunits of R. (We formally put {(0) = 0.) To these data one associates Igusa's local zetafunction Z(s) = Z(s; f;{) := ZRn {(ac f(x))jf(x)jsjdxjfor s 2 C with <(s) > 0. Here jdxj denotes the Haar measure on Kn, normalized such thatRn has measure 1. Igusa [I1] showed that it is a rational function of q�s, so it extends toa meromorphic function on C .For more information and references on Igusa's local zeta function, see for example theoverview paper [D3].(5.2) From now on we suppose that { is trivial on 1 + P , i.e. it is induced by a characterof �K; this is the relevant case (see [D3, Theorem 3.3]). Let also d denote the order of {.We choose an embedded resolution h : X ! A n of f�1f0g, constructed entirely over K(this in possible by [H]), for which we use the notation of (1:1), where now the Ei; i 2 S,are the K{irreducible components of h�1(f�1f0g). We also set �EI := EI n [` 62IE` forI � S. Igusa's proof of the rationality of Z(s) yields the following : All real poles of Z(s)are among the values � �jNj , where j 2 S and djNj.Moreover the following formula gives a closed expression for Z(s) in terms of the reso-lution (X; h). In the sequel we denote reduction mod P by (�) �K .5.3. Theorem [D3, x3]. Suppose that the resolution (X; h) has good reduction modP(see [D3, (3.2)]). Then Z(s) = q�nXI�S c{I Yi2I q � 1q�i+sNi � 1with c{I =Xk (�1)k Tr[Frob; Hkc (( �EI) �K ;L{)]:Here L{ is a certain `{adic sheaf on X �K associated to {, Tr denotes the trace, and Frobis the geometric Frobenius of �K. (Remark that c{I = 0 when EI = ;.)5.4. Remark. (i) `Good reduction modP ' is a technical condition. When f and (X; h)are de�ned over a number �eld F , then we have good reduction for all but a �nite numberof completions K of F .(ii) The sheaf L{ is in fact zero on [d-Ni(Ei) �K and locally constant of rank one else-where; we can thus restrict the summation above to subsets I for which djNi for all i 2 I.13



(iii) When { is the trivial character the sheaf L{ is constant on �X and so c{I is just thenumber of �K{rational points on ( �EI) �K .(5.5) Let now EJ be a nonempty intersection for which s0 = � �jNj for all j 2 J , ands0 6= � �iNi for other components Ei of h�1Y that intersect EJ . For such an intersectingcomponent Ei set �i := �i + s0Ni. The contribution of EJ to the formula for Z(s) aboveis q�n (q � 1)jJjQj2J (q�j+sNj � 1)XI�J c{I Yi2InJ q � 1q�i+sNi � 1 :We are interested in the contribution of EJ to the problem whether s0 is a pole of orderjJ j of Z(s), and thus in the nullity of(�) Rs0 :=XI�J c{I Yi2InJ q � 1q�i � 1 :We may suppose that djNj for all j 2 J since otherwise Rs0 is trivially zero.Let �(�) denote the Euler{Poincar�e characteristic with respect to singular cohomology.Inspired by Igusa's so{called Monodromy Conjecture [D3, Conjecture 2.3.2] and the for-mula of A'Campo [A, Theorem 3] we expect the following. For a generic projective EJwith �( �EJ ) = 0 we should have Rs0 = 0.(5.6) When jJ j = 1 then EJ is in fact an exceptional variety Ej and s0 = � �jNj . In thecase of curves (n = 2) necessarily Ej �= P1, and so the condition �( �Ej) = 0 is equivalentto Ej intersecting exactly twice other components, say E1 and E2. ThenRs0 = c{fjg + c{fj;1g q � 1q�1 � 1 + c{fj;2g q � 1q�2 � 1 :When { is the trivial character we have c{fjg = q � 1 and cxfj;1g = c{fj;2g = 1 by Remark5.4(iii) and consequently Rs0 = 0 if we would have(5) �1 + �2 = 0 :When { is arbitrary using Remark 5.4(ii) it is not di�cult to prove that Rs0 = 0 if moreoverwe have djN1 , djN2. (See also Example 5.7.3.) This last equivalence is implied by thecongruence(6) N1 +N2 � 0 mod Nj :Now (6) and (5) are precisely Corollary 2.4 and the example after Proposition 4.3 forjJ j = 1 ! In fact the nullity of Rs0 was precisely the motivation for developing theserelations and congruences for n = 2 [S,M,I,L].14



Using our theory of relations in codimension one we veri�ed in [V3] that Rs0 = 0 whenexpected for a lot of cases for surfaces (n = 3) and for some cases in arbitrary dimensionn, assuming that { is the trivial character. When { is arbitrary we veri�ed the nullityof Rs0 is some cases for surfaces using our theory of congruences (in codimension one); acouple of examples concerning the related topological zeta function (see (5.9)) appearedin [V2].Here we should mention that when n > 3 there is a whole zoo of con�gurations satisfying�( �Ej) = 0, and the vanishing of Rso seems a bit miraculous.(5.7) Now when jJ j is arbitrary we can use the relations and congruences in arbitrarycodimension of this paper to verify analogously the nullity of Rs0 . We give some examples,assuming that the resolution (X; h) has good reduction modP , and for simplicity alsothat EJ is irreducible over an algebraic closure of K.(5.7.1) If EJ is a projective curve then �( �EJ ) = 0 if and only if EJ = �EJ is an ellipticcurve, or EJ �= P1 and it intersects exactly twice other components. I doubt whether the�rst case can occur in an embedded resolution con�guration. The second case certainlyoccurs and as above we have that Rs0 = 0, using Corollary 2.4 and the example afterProposition 4.3 (for arbitrary jJ j).(5.7.2) When { is the trivial character all cases of [V3] where we veri�ed for jJ j = 1 thatRs0 = 0 can be extended to arbitrary codimension jJ j.(5.7.3) Let EJ �= Pm(m > 2), and let the irreducible components of intersections of EJwith other E`; ` 62 J , be k hyperplanes in general position (2 6 k 6 m + 1). One easilysees that �( �EJ) = 0.Let �rst { be the trivial character. Then the numbers c{I in the expression (�) are justthe numbers of �K{rational points on the ( �EI) �K . When jJ j = 1 we proved in [V3] thatRs0 = 0 (by induction on n and k); the same proof is valid for arbitrary jJ j. Let now {be arbitrary (of order d).First case : djNi for all i = 1; : : : ; k. By Remark 5.4(ii) we have that the sheaf L� inthe formula of 5.3 is locally constant on EJ and thus constant, since EJ �= Pm is simplyconnected. Consequently the numbers c{I are just the numbers of �K{rational points on( �EI) �K , and Rs0 = 0 arguing as above.Second case : d - N1 and d - N2 (after permutation of the indices). We will show thatall coe�cients c{I in (�) are zero, in fact more precisely that all the cohomology groupsin the expression of 5.3 for c{I are zero, using Proposition 5.8 below. Indeed by an easyveri�cation or by Proposition 5.8(ii) we have that �( �EI) = 0 for any relevant I � J , i.e.for I such that J � I � J [ f3; : : : ; kg and djNi for all i 2 I. Then Proposition 5.8(i)implies the nullity of all occurring cohomology groups.Remark now that the eventual remaining case `d - N1 and djNi for all i = 2; : : : ; k' isruled out by Corollary 2.3. Indeed since PicPm �= Z this is equivalent to Pki=1Ni � 015



mod NJ , which implies that djPki=1Ni. It is an exercise to check that in this hypotheticalcase we would in general have Rs0 6= 0.(5.7.4) Using the notation of (2.6) we take D0 �= P1�P1 and let D1 = D = EJ be obtainedfrom D0 by the blowing{up �1 at a point P . Let the Ci; i 2 T 0; consist of a �bre C1 ofone projection pr1 : D0 ! P1 and of two �bres C2 and C3 from the other projection pr2,such that moreover C1 \C2 = fPg. Consequently the Ci; i 2 T; consist of C1; C2; C3; andthe exceptional curve C4 of �1.D0 C1C2 C3P�  ��1 EJ.....................................................................................................................................................................................................................................................................................................C1C2 C3C4
In this example Congruence B states thatN1C1 +N2C2 +N3C3 = 0 in PicD0NJ PicD0 :Since PicD0 �= pr�1 PicP1 � pr�2 PicP1 �= Z� Z this is equivalent toN1 � 0 mod NJ and N2 +N3 � 0 mod NJ :Furthermore Congruence A is N4 � N1 +N2 mod NJ :One now veri�es immediately that only the following two possibilities can occur :(i) djNi for 1 6 i 6 4,(ii) djN1 and d - Ni for 2 6 i 6 4.Case (i). As in the �rst case of (5.7.3) the numbers c{I are the numbers of �K{rational pointson ( �EI) �K . Using the structure of PicD0 and the fact thatKD0 = pr�1KP1+pr�2KP1, it is notdi�cult to verify that in this case the Relations B and A of x4 are f�1 = �1; �2+�3 = 0gand �4 = �1 + �2, respectively. Now it is an easy exercise to compute that Rs0 = 0.Case (ii). In this case only �EJ and �C1 := C1 n (C3 [C4) possibly contribute to Rs0 . Bothcontributions are however zero for we can show that, L{ being the sheaf of Theorem 5.3,(7) Hkc (( �C1) �K ;L{) = 0 for all k, and(8) Hkc (( �EJ ) �K ;L{) = 0 for all k.Indeed (7) is true because of Proposition 5.8 and the fact that �( �C1) = 0. We indicatea proof of (8), which gives the reader an idea of the arguments underlying Proposition16



5.8. First the exact sequence of cohomology with compact support for the inclusions�EJ ,! �EJ [ �C1  - �C1, together with (7), yieldsHkc (( �EJ ) �K ;L{) �= Hkc (( �EJ [ �C1) �K ;L{) for all k:Now since �EJ is a�ne these cohomology groups are zero for k = 0; 1. Using [SGA4 12 ,Sommes Trig. 1.19.1] and Poincar�e duality we haveHkc (( �EJ [ �C1) �K ;L{) �= Hk(( �EJ [ �C1) �K ;L{) �= �H4�kc (( �EJ [ �C1) �K ; �L{)for all k, where � denotes the dual. So Hkc (( �EJ ) �K ;L{) = 0 also for k = 3; 4 and conse-quently for k = 2 since �( �EJ) = 0.5.8. Proposition. Let L� be the sheaf occurring in the formula of Theorem 5.3. Let EJbe a nonempty intersection of exceptional varieties with djNj for all j 2 J , and such thatEJ n [d-E`E` is a�ne.(i) For I � J such that djNi for all i 2 I we have thatHkc (( �EI) �K ;L�) = 0 for k 6= n� jIj = dimEI :(ii) If �( �EJ) = 0 then for all I in (i) we have that �( �EI) = 0.Proof. See [V4] when jJ j = 1. The general case is analogous. �(5.9) Finally we introduce the related topological zeta function. Taking heuristically thelimit for q ! 1 in the formula in 5.3 yields(��) XI�S8i2I:djNi �( �EI)Yi2I 1�i + sNi :Denef and Loeser [DL] de�ne the topological zeta function Z(d)top(s; f) associated tof 2 C [x1 ; : : : ; xn] and d 2 Nnf0g as the rational function (��) in the variable s. They provethat this de�ning formula does not depend on the chosen resolution (X; h) by expressingit in an exact way as a limit of Igusa's local zeta functions.One can also state the Monodromy Conjecture for Z(d)top(s; f), and our vanishing resultsabout poles of Igusa's local zeta function are also valid for the topological zeta function,the latter results being easier then the �rst.
17
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