MORE CONGRUENCES FOR NUMERICAL
DATA OF AN EMBEDDED RESOLUTION

WILLEM VEYS*

ABSTRACT. To an arbitrary intersection of exceptional varieties of an embedded resolution
we associate a finite number of congruences between naturally occurring multiplicities. This
theory generalizes previous results concerning just one exceptional variety. Moreover we
describe precise equalities which imply the congruences and we give some applications on the
poles of Igusa’s local zeta function.

INTRODUCTION

(0.1) Let k£ be an algebraically closed field of characteristic zero and f € k[xy,...,z,].
Let h : X — A™ be an embedded resolution of singularities of f~1{0}, considered as an
algebraic set in affine space A™. We suppose that this resolution (X, h) is constructed by
means of consecutive blowing—ups, according to Hironaka’s theorem [H].

We denote by E;,i € S, the irreducible components of h=*(f~*{0}) and by N; the
multiplicity of E; in the divisor of f o h.

(0.2) Fix one exceptional variety E;. When n = 2 the following congruence is now well

known. Say Ej; intersects k times other components Fy,..., E;. Then
k

(%) ZN,- =0 mod IVy,
i=1

and more precisely Zle N; = N;j(1+4p), where p is the number of times that a point of E;
occurs as centre of some blowing—up during the resolution process. The original proof for
analytically irreducible f(z1,22) was derived by consecutive work of Strauss [S]|, Meuser
[M] and Igusa [I2], and for general f(z1,z2) by Loeser [L].
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(0.3) When n is arbitrary we developed in [V2] a general theory of congruences, extending
(%). The essential feature of dimension n > 3 is that E; is subject to a ‘historical evolution’
during the resolution process. Let E; C X be the strict transform in X of the variety E}),
created at some stage of the resolution process h as exceptional variety of a blowing—up.
Then in general E; is not isomorphic to E;-); more precisely E; itself is obtained from E?
by a sequence of blowing—ups. (When n = 2 this phenomenon does not occur for then
E} = FE; =P

In fact we associated a finite number of congruences mod N; to Ej; there are Basic
Congruences associated to its creation as E}) in the resolution process, generalizing (),
and an Additional Congruence associated to each blowing—up of the sequence that produces
Ej out of E.

(0.4) In this paper we will generalize this theory further to congruences ‘in arbitrary
codimension’. We first give an example.
When n = 3 let E; and Ej, be two intersecting exceptional surfaces and suppose that

the curve D := E; N Ej, is irreducible and projective. Say D intersects k times other
components F,..., Ex. Then
k
ZN,- =0 mod ged(Nj,,Nj,),
i=1

where gcd denotes the greatest common divisor. This ‘codimension 2’—congruence cannot
be derived as a consequence of the ordinary ‘codimension 1’-congruences of [V2]. In fact
there is an explicit equality Zle N; +koNj, + k1N, =0, where kg is the self-intersection
number of D on Ej,.

(0.5) We will associate to each irreducible component D of a nonempty intersection of ex-
ceptional varieties NjesE; a finite number of congruences mod ged,¢c ; IVj, and moreover
we will describe equalities from which they can be obtained. We want to remark here
that the congruences can be proved directly in an elegant way without reference to the
equalities. ( For |J| =1 this was not mentioned explicitly in [V2].)

We now state these congruences more precisely. In general the variety D goes through
a historical evolution during the resolution process : it is obtained by a finite succession
of blowing-ups

. o .
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with irreducible nonsingular centre Z;_; C D'~! and exceptional variety C; C D for
i =1,...,m. The variety D is created at some step of the global resolution process (in
fact at the creation of the ‘last’ of the Ej,j € J).

There are two kinds of intersections of D with components Ey, ¢ ¢ J. We have the strict
transforms in D of the exceptional varieties C1, ..., Cy,; and also the strict transforms in
D of certain varieties Cy, k € TP, (of codimension one) in DY. We have moreover that
the strict transform of each C;,i € T° U {1,...,m}, is (an irreducible component of) the
intersection of D with exactly one component of h=1(f~1{0}); slightly abusing notation
let this component have multiplicity /V; in the divisor of f o h.



Theorem. Set N; := gcd ¢ ; Nj. Using the notation above we have for i =0,...,m —1
that

(CONGRUENCE A) Nit1 = Z prNgy  mod Ny,
kETOU{1,....i}

where py, is the multiplicity of the generic point of Z; on (the strict transform in D' of)
Cy. We have also

(CONGRUENCE B) Z NoCo =0 i Pic D°
= n——— .
S Ny Pic DY

Whenever D is complete, Congruence B induces a finite number of ordinary congruences
mod V.

(0.6) For i € S let v; —1 be the multiplicity of E; in the divisor of h*(dz1 A---Adx,) on X.
Classically the (N;,v;),i € S, are called the numerical data of the resolution (X, h). The
numbers — %, 1 € S, form a complete list of candidate poles for Igusa’s local zeta function of
f (when f is defined over a p—adic field). We will mention a straightforward generalization
to arbitrary codimension of our ‘codimension one’-theory of relations between numerical
data [V1], which enables us to give some applications of the congruences of this paper

concerning the poles of Igusa’s local zeta function.

(0.7) The plan of the exposition is as follows. In §1 we recall briefly the important aspects
of an embedded resolution and in §2 we prove the Congruences A and B. Their underlying
equalities are studied separately in §3; this part is a bit technical and is not needed for
the applications concerning Igusa’s local zeta function. After developing the more general
relations between numerical data in §4, those applications are treated in §5.

1. EMBEDDED RESOLUTION

(1.1) Let k be an algebraically closed field of characteristic zero and let f € k[xq,...,z,].
Let Y = f=1{0} denote the zero set of f in affine space A”. We exclude the trivial case
f € k,s0Y is a hypersurface in A™.

Definition. An embedded resolution (X, h) for Y C A™ consists of a nonsingular variety
X and a proper birational morphism h : X — A" such that the restriction h|x\j-1y
is an isomorphism and A~'Y has normal crossings in X. In particular the irreducible
components of A=Y are nonsingular hypersurfaces.

Remember that a reduced hypersurface E of X has normal crossings if for all z € X
there exists a regular system of parameters ¢1,...,t, in the local ring Ox , of X at x such

that the ideal in Ox , of each irreducible component of E containing x is generated by one
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of the t;. (Analytically one can think of E being locally a union of coordinate hyperplanes.)
Also E is said to have normal crossings with a (necessarily smooth) subvariety D of X if
for all € D the ideal of D in Ox , is generated by some of the ¢;.

(1.2) Hironaka [H] constructed an embedded resolution as a finite composition of blowing-
ups. Recall that if g : Z — Z is the blowing—up of the variety Z with centre the closed
subset B of Z, then the exceptional divisor E = g~ !B is everywhere of codimension one
on Z , and the restriction g| A\E is an isomorphism. For any subvariety V of Z the closure

of g~ (V \ B) in Z is called the strict transform of V by g. If Z and B are nonsingular
varieties, then the same is true for Z and E.

More precisely Hironaka constructed a resolution (X, h) as a suitable composition of
blowing—ups

9gi gr— r
At=Xo & x, & L X & X L X X=X

with irreducible nonsingular centre B; C X;,0 < ¢ < r, such that codim(B;, X;) > 2.
Moreover each B; is contained in the (repeated) strict transform of YV in X;, and the
reduced hypersurface, consisting of the (repeated) strict transforms in X; of the exceptional
varieties of g1, ..., g;, has normal crossings with B;.

Finally h='Y = (g, o---0g1)~'(Y) has thus normal crossings in X; its irreducible com-
ponents are the strict transforms of the irreducible components of Y and the exceptional
varieties of h, being the strict transforms in X of the exceptional varieties of g1,..., g,.

(1.3) Let now D C X; be any variety which intersects B; transversely everywhere (and is
not contained in B;) and D C X;41 its strict transform by g¢;41. We have the following
important fact (see e.g. [GH, page 605] for the first claim; the second is not difficult to
verify).

Proposition. The restriction g1 |p : D — D is the blowing—up of D with (nonsingular)
centre B; N D. Moreover the exceptional divisor of g;11|p Is the intersection of D with
the exceptional divisor of g;y1.

Note that B; N D can eventually be reducible. The total blow—up of D with centre
B; N D can then be considered as the result of consecutive blowing—ups of D with centres
the irreducible components of B; N D, which are necessarily disjoint.

We will use this proposition intensively for D a nonempty intersection of exceptional
varieties of h; because of the normal crossings property the transversality condition is
indeed satisfied.

(1.4) From now on we will denote the irreducible components of h='Y by E;,i € S, and
their multiplicity in the divisor of f o h by N;; alternatively (f o h) = > ;. ¢ NiE;. We
also set By := NerE; for I € S. While working with the resolution process h we will in
general use the same notation for F;, when created as exceptional variety, and for its strict
transforms in any Xj.



2. SELF—INTERSECTION DIVISORS AND CONGRUENCES

(2.1) From now on we fix intersecting exceptional varieties F;,j € J, and an irreducible
component D of E;. Remark that because of the normal crossings property D is nonsin-
gular and disjoint from eventual other components of E;, and that codim(D, X) = |J|.

Let C;,i € T, denote all the irreducible components of the intersections D N Ey, £ & J.
Set also Ny := gedje; Nj. Our starting point is the following observation.

2.2. Proposition. For j € J we denote by D ;- the self-intersection divisor of D on
E n\yjy, considered as an element of Pic D. Then

> NiD s+ NiC;=0  in PicD.
jeJ i€T

Proof. Denote by 6 : D — X the natural embedding and consider for each j € J the

decomposition D X Engi cﬁi) X of 6. Since > . o N;E; =0 in Pic X we have that

1€S
(1) Y Ni§*E;=0  in PicD.
1€S

Now 6" (3¢5 NiEi) = > ;eq NiC; and for each j € J we have that 0" E; = o (57 E;) =
oj(Ey) = o (D) = Dcj>. Substituting all this in (1) yields the stated expression. [

2.3. Corollary. Y ;. N;Ci = 0 in 52825,

2.4. Corollary. Let D be a projective curve. Then (taking degrees)

ZNZ' =0 modNy,
i€eT

and more precisely, if r; denotes the self-intersection number of D on Ej\y, then
> jes filNi + 2ier Ni = 0.

2.5. Remark. Proposition 2.2 and its corollaries are in fact valid in a more general context.
(1) They are true for any embedded resolution of Y, i.e. not necessarily obtained a la
Hironaka.
(44) The E;,j € J, can be arbitrary (intersecting) components of h™'Y. Now for
example when f is irreducible and the strict transform of Y is one of the E;,j € J, then
Ny = 1 and the congruences are meaningless. See (2.8) for an application of the equalities.

(2.6) We now fix the notation for our general congruences and equalities. Using Proposition
1.3 the following is not difficult to verify.



(i) The variety D is the strict transform in X of a nonsingular variety D°, created
at some step of the global resolution process. (In fact D° appears in this process at the
creation of the ‘last’ of the Ej;, j € J, as exceptional variety of a blowing—up of h; and more
precisely D° is a component of the intersection of this variety with the other E; 5 € J,at
that stage of h.)

(i1) So D itself is obtained from D by a finite succession of blowing-ups

Dl pt?z pi-tZipi Tttt pm-1%mopm

with irreducible nonsingular centre Z;_; C D'~! and exceptional variety C; C D* for

i =1,...,m. In fact C; is (a component of) the intersection of D* with some global
exceptional variety Ey at the stage where Ey is created.
(ii7) For i = 1,...,m and for any variety V C D7,0 < j < 4, let the strict transform of

V in D* (by m;0---omj;;) be denoted by V().

Let Cj,7 € T, be the intersections of D with components Ey, £ ¢ J. They consist of the
strict transforms Cfm), N C,(nm) in D of the exceptional varieties C1,...,C,, and of the
strict transforms C\™ in D of varieties C;,i € T, (of codimension one) in D°. Those last
varieties are the intersections of D® with components E,, ¢ ¢ J, at the stage of h where
DY is created. (So T =T°U{1,...,m}.)

(iv) Since UpesFEy has normal crossings in X we have for each i € T that C’i(m) is (a
component of) the intersection of D with exactly one component of h=1Y, different from
the E;,j € J. For simplicity of notation let this component be E;.

2.7. Theorem. Fori=0,...,m — 1 we have that

(CONGRUENCE A) N1 = Z 1N, mod Ny,
kETOU{1,...,i}

where py, is the multiplicity of the generic point of Z; on C,gi). We have also that

(CONGRUENCE B) Z NoCh = 0 . PicD°
= in ————,
S " N Pic DY

Remark. (i) Of course these congruences are only meaningful when Ny > 1.
(1) In general Congruence B thus has divisors as ‘coefficients’. When Pic D° = Z, for
example if D° is some projective space, Congruence B becomes an ordinary congruence.
(i74) More generally, whenever D is complete, Congruence B induces a finite number
of numerical congruences. For then we can consider it in %, where Num D? is the
group of divisors on D® modulo numerical equivalence, which is a quotient of Pic D°. Since
Num DV is a finitely generated free abelian group we get rank (Num DY) congruences.



Proof. Consider for a fixed i € {0,...,m — 1} the blowing—up m;;1 : D! — D Tt is
not difficult to verify that the classical isomorphism Pic D**! 2 7¥ | Pic D' @ ZC; 41 (with
injective 77, ;) induces

@) PicD*! . PicD o L o
N, PicDit1  "+UN PicDi © N,z Y

where 77, ; is still injective. .
Pic D' 1"

W This is equivalent to

Suppose now that ZEETOU{I,...,H-I} NgCéH_l) =0 in
D heTOULL,....i} Nk(”fﬂczgi) — #kCit1) + Nit1Cip1 = 0, and using (2) we obtain

- Pic D
S M@ -0 e
NG =0 s D
keTOU{1,...,i}
and
Nipi= Y Ne i
i+1 — HriNE NJZ .

kETOU{1,...,i}

Starting from the fact that ) . . N,-Ci(m) = 0 in Nljif,ilc)D (Corollary 2.3) we use the
arguments above consecutively for ¢ = m — 1,...,0 to obtain the Congruences A and

finally end up with Congruence B. [

For concrete varieties D° one can make Congruence B more explicit. When D° is a
projective space bundle over some base variety this has been done in [V2]. (When |J| =1
then D° is always such a bundle.)

(2.8) Take n = 3 and suppose that (X, h) is the embedded resolution of an isolated singu-
larity P of the irreducible surface Y. The equalities of Corollary 2.4 are useful to determine
the self-intersection numbers in the resolution graph of P € Y, when an explicit embedded
resolution of Y C A3 is given.

Indeed let D be (a component of) the intersection of the strict transform of Y with
some exceptional surface E;, and let D intersect £k times other exceptional surfaces, say
Eq, ..., Ex. We want to know the self-intersection number x of D on the strict transform
of Y (which is a resolution of P € Y'). Now Corollary 2.4 says that

k
Hj‘i‘Nin-i—ZNi:U,

=1

where k; is the self-intersection number of D on E;, which can very easily be computed.



3. PRECISE EQUALITIES

(3.1) We keep using the notation of (2.6). The congruences in the preceding section were
completely determined by the configuration of the Cj;,7 € T', on D; or equivalently of the
C;,i € TV, on D°. For example we did not need any information concerning how D is
embedded in X or in the Ej,J’ C J, or analogously for D°. In my opinion precisely this
feature makes these congruences attracting and useful for applications. See §5.

The underlying equalities for these congruences however depend rather intensively on
knowledge about the global resolution process. We will derive them from the key Lemma
3.3, for which we now introduce the data.

(3.2) We fix some blowing—up g with centre B of the global resolution process h, occurring
after the creation of D° (and thus of all the Ej, j € J). We denote the strict transform of
DY right before and after g respectively by DT and D* and the restriction of g to D¥ by .
So 7 : D} — DT itself is a blowing—up with (eventually reducible) centre BN DT. (We may
suppose that BN.DT # (), otherwise nothing relevant happens.) Analogously we denote for
each J' C J the ‘ancesters’ of E; C X before and after g respectively by EY, c X1 and

EE, C X*. For each j € J we thus have the following diagram.

t
D} —— Bj\y —— X

® | l Js

t
DV —— B}y —— X7

T
Let also @<j>

of Pic DT, and ®i<]> the analogous element of Pic D¥.

denote the self-intersection divisor of DT on E}\ Gy considered as an element

3.3. Lemma. We use the notation of (3.2). Let C’g, e € &, be the (necessarily disjoint)
irreducible components of the exceptional divisor of m, and C’ii ,4 € I, all other irreducible
components of the intersection of D¥ with components E,, ¢ ¢ J, in X,
First case : codim(B N DY, DT) > 2.
So for each e € £ we have that Z. := n(C?}) is of codimension at least 2 in D' and the
irreducible components of the intersections of DT with the E, ¢ & J, in XT are precisely
the CJ := n(C}),ie I

IfY ey aj©i<j> + D eerue agC’ei = 0 in Pic D}, then

(i) Y a@t+> a;Cl =0 in PicD', and
jeJ iel
(44) e = Z ,uz(e)a,- + Z(Sjaj for all e € &,
iel jeJ
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where p( °) s the multiplicity of the generic point of Z, on C’;r, and 0; =1 if B C E; and
0; =01if B ¢ Ej.

Second case : codim(B N DT, D) = 1.
So 7 : DY — D' is an isomorphism and the irreducible components of the intersections of
DT with the Ey,¢ & J, in X1 are precisely the Cg = W(CJ),K elUE.

IfY e s aj©i<j> + D eerue agC’ei = 0 in Pic D¥, then

(iii) > a;d .+ acl+> (e - dja;)CI =0 in PicDT.

JjeJ i€l e€& JjeJ

Proof. We first show for each j € J that in Pic D*

I _ eyt
(4) DL, =mdL, —§;> CL
ecf

Consider the natural embeddings oy : DT — X and ay : D} — X* in the diagram (3) of
(3.2) and let E* be the exceptional divisor of g in X*. Then as in the proof of Proposition

T il 3 _ xpik
2.2 we have that ®<]>—aTE and ®<]> %Ej- So

Ei<J> = a}‘(g*E';[ —§;EY) =x O‘TET — ooy (B = 7T*®T<]> 0j ch
ecé

First case. Substituting (4) and the identities W*CT = C’:E + D e M )Cg,i € I, in the
given expression yields

S ai@dl -3 CH+ > air = u?ChH +3 a0t =0 in PicD},
jeJ eeé i€l ecé ecé

which is equivalent to

71'*(2 aj@LD + ZGZCJ) + Z( Z,u(e)az — Zéjaj)cg =0.

Jj€J i€l ecé i€l Jj€J

Now since Pic D¥ 22 7* Pic DT @ (@.ceZC?), where 7* is injective, we obtain the stated
results.
Second case. Now substituting (4) and 7*C] = C}, £ € TUE, in the given expression yields

aj(m *pf 8y mChH) + CL,’?T*CZT +Y a.n*Cl =0 in Pic D¥,
<j>

JjeJ ee& el ee€

which clearly implies the stated expression in Pic DT. O



3.4. Theorem. We use the notation of (2.6).

(A) Fix i € {0,...,m — 1}. Let B denote the centre of the global blowing—up in the
resolution process h by which C;41 is created (as irreducible component of the intersection
with the global exceptional variety) and set §; =1 if B C Ej and §; = 0 if B ¢ E; for
jedJ. Forallk €e T°U{l,...,i+ 1} and j € J let m<]> be the number of centres
By of global blowing—ups in the subsequent stages of the resolution process that satisfy

C’,?Hl) C By C Ej. Then

keTou{1,...,i} JjeJ keTou{1,...,i}

where py, is the multiplicity of the generic point of Z; on C,gi).

(B) For allk € T° and j € J let m<]> be the number of centres By of global blowing—ups
in stages of the resolution process h after the creation of D that satisfy C,?O) C B, C Ej.

Then
> NG =) Nj(Y mi?7Cr-9%,.)  in Pic D’
keTo© JjeJ keT©

where @g j> € Pic DY denotes the self-intersection divisor of D° on the intersection of the
Ey, 0 € J\ {j}, at the stage where D° is created.

Proof. (A) For simplicity of notation we will suppose that C**! is exactly the intersection
of the global exceptional variety associated to B with the strict transform of DY; so this
strict transform may be identified with D**1. The general case is entirely similar.

For : =0,...,m we denote by @(<g> € Pic D? the self-intersection divisor of D? on the
intersection of the Ey, £ € J\ {j}, at the appropriate stage of the global resolution process.
Starting from the equality

SINCe+ Y N =0 in PicD
keT jeJ

(Proposition 2.2), consecutive applications of Lemma 3.3(7,iii) yield

Ne =S m>N)C + S N = in PicDiT!
k J <j3>
keTou{1,...,i+1} jeJ JjeJ

Then by Lemma 3.3(éi) we have that

Nigr = mITNj= > g(Ne = > mp?” Nj) + ) 6N,

JjedJ keTOou{1,...,i } JjeJ JjedJ
which is equivalent to the stated expression for N;y.
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(B) Further applications of Lemma 3.3(7,iii) finally yield

STV =Y mTN)Ce+ Y NDY) = in PicD?. O
keT? JjedJ jeJ

Caution. The m 7> in (A) depend on the chosen i € {0,...,m — 1}.

(3.5) We can extend all previously obtained results to the following situation. Instead
of the polynomial function f on A™ we can consider in (1.1) any nonsingular variety A
and any rational function f on A. Let now Y denote the support of the divisor of f, the
map h : X — A an embedded resolution of Y C A, and again FE;,7 € S, the irreducible
components of A=Y with multiplicity N; in the divisor of f o h.

The essential difference is now that the N;,7 € S, can also be negative and eventually
even zero. This however does not cause any trouble. Of course when N; = 0 a congruence
mod N becomes an equality.

4. RELATIONS BETWEEN NUMERICAL DATA IN ANY CODIMENSION

(4.1) We now introduce besides the NN;, i € S, other invariants of the embedded resolution
(X,h) for Y € A". For i € S let v; — 1 be the multiplicity of E; in the divisor of
m*(dry A -+ Adwy) on X; alternatively the canonical divisor on X is ), o(v; — 1)E;.
Remark that v; = 1 for any irreducible component of the strict transform of Y. Classically
the (IV;,v;),i € S, are called the numerical data of the resolution (X, h).

The rational numbers _Fv 1 € S, are important because they form an exhaustive list of
candidate poles for certain zeta functions associated to f, see §5. In particular a nonempty

intersection Ey for which all £+,7 € I, are equal induces in general a candidate pole of
order |I|.

(4.2) We now fix a nonempty intersection E; of exceptional varieties such that so = —K,—J
for all j € J, and an irreducible component D of E;. Let C;,i € T, still denote all the
irreducible components of the intersections D N Ey, £ ¢ J. Remember that each C;,7 € T,
is the intersection with D of exactly one component of h=1Y’; slightly abusing notation we
let this component have numerical data (N;,v;) and we denote «; := v; + soN;.

These numbers «; occur naturally in the expression for the ‘residue’ of the candidate
pole sg for the zeta functions mentioned above; see §5. When |J| = 1 we developed in
[V1] a general theory of linear relations between the «;,7 € T. We now present shortly a
straightforward generalization when E; is of arbitrary codimension.

In the sequel for a nonsingular variety V' we denote by Ky its canonical divisor.

11



4.3. Proposition. Kp =), r(a; —1)C; in PicD ® Q.

Proof. By definition of the numerical data we have that Kx = >, ¢(vy — 1)E; and
> ves NeEy = 0 in Pic X, and consequently

Kx = Z(V@ — 1)E@ + SOZNgEg = — ZE]' + Z(V@ + sogNp — 1)Eg

tes tes jed egJ

in Pic X ® Q. This implies the stated expression after applying |.J| times the adjunction
formula, or at once by [F, Example 3.2.12]. O

Ezample. When D is a projective curve of genus g we obtain the relation 2g — 2 =
ZiET(ai —1).

Remark. Proposition 4.3 is valid for any embedded resolution, not necessarily a la Hironaka.

(4.4) When dim D > 2 we obtain a finite number of relations by analyzing as before the
historical evolution of D.

Theorem. We use the notation of (2.6). Fori=0,...,m — 1 we have that

(RELATION A) Qi1 = Z pr (o — 1) + 73,
keTou{1,...,i}

where py, is the multiplicity of the generic point of Z; on C’,gi), and r; = codim(Z;, D*). We
have also

(RELATION B) Kpo= Y (ar—1)Cy in PicD’ ® Q.
keT?©

Idea of the proof. 1t is quite analogous to the proof of Theorem 2.7 starting now from
Proposition 4.3. Investigating ‘backwards’ the evolution of the canonical divisors Kp: and
using the identities Kpi+1 = 77 Kpi + (r; — 1)C;41 we derive for i =m —1,...,0 that

Kpi = > (ar—1)Cy in PicD'® Q,
keTOU{1,...,i}

and as a bonus we obtain the Relations A. See [V1] for the complete proof of the case
|J| = 1, which is in fact also valid in the general case. [

(4.5) For concrete varieties D we can make Relation B more explicit. For example when
D% = P™ then it becomes

de(ak—1)+m+1:0,
keT

where dj, is the degree of the hypersurface Cy. See [V1] when DY is an arbitrary projective
space bundle.

12



5. POLES OF ZETA FUNCTIONS

(5.1) Let K be a finite extension of the field Q, of p—adic numbers, R the valuation ring
of K, P the maximal ideal of R, and K = R/P the residue field with cardinality ¢q. For
z € K we denote by ord z € Z U {400} its valuation, |z| = ¢~ "4 its absolute value, and
ac(z) =z~ °"47 its angular component, where 7 is a fixed uniformizing parameter for R.

Let f(z) € K[z] = K[z1,...,2,] and 3¢ : R* — C* a character of R*, the group of
units of R. (We formally put s(0) = 0.) To these data one associates Igusa’s local zeta
function

25) = Z(s. £.) i= | etac f()| (o) da]

for s € C with (s) > 0. Here |dz| denotes the Haar measure on K™, normalized such that
R™ has measure 1. Igusa [I1] showed that it is a rational function of ¢, so it extends to
a meromorphic function on C.

For more information and references on Igusa’s local zeta function, see for example the
overview paper [D3].

(5.2) From now on we suppose that s is trivial on 1+ P, i.e. it is induced by a character

of K; this is the relevant case (see [D3, Theorem 3.3]). Let also d denote the order of s.
We choose an embedded resolution h : X — A™ of f~1{0}, constructed entirely over K

(this in possible by [H]), for which we use the notation of (1.1), where now the Ej;,i € S,

are the K-irreducible components of h='(f~1{0}). We also set E; := Ej \ UserFEy for
I C S. Igusa’s proof of the rationality of Z(s) yields the following : All real poles of Z(s)
are among the values —V—jj, where j € S and d|Nj.

Moreover the following formula gives a closed expression for Z(s) in terms of the reso-
lution (X, k). In the sequel we denote reduction mod P by () g

5.3. Theorem [D3, §3]. Suppose that the resolution (X,h) has good reduction mod P

(see [D3, (3.2)]). Then
2= Y i [ ot
ICS zEI
with .
o = 32 (~1)F TlFrob, HE((E)) e L)
k

Here L, is a certain {-adic sheaf on X g associated to s, Tr denotes the trace, and Frob
is the geometric Frobenius of K. (Remark that ¢ =0 when Er = ().)

5.4. Remark. (i) ‘Good reduction mod P’ is a technical condition. When f and (X, h)
are defined over a number field F', then we have good reduction for all but a finite number
of completions K of F'.

(i¢) The sheaf £, is in fact zero on Uy, (E;) g and locally constant of rank one else-
where; we can thus restrict the summation above to subsets I for which d|N; for all i € I.
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(4ii) When ¢ is the trivial character the sheaf £,, is constant on X and so ¢7 is just the

_ [}
number of K-rational points on (E7) &

(5.5) Let now Ej; be a nonempty intersection for which so = —]'Q.—JJ for all j € J, and

sp # —n+ for other components E; of h='Y that intersect Es. For such an intersecting
component F; set «; := v; + soN;. The contribution of E; to the formula for Z(s) above

is
_ (¢ — 1) q—1
n
q Hje.]( VJ—i—sN Z H ul—i-le —1°

DJ zEI\J

We are interested in the contribution of E; to the problem whether sg is a pole of order
|J| of Z(s), and thus in the nullity of

(+) =Y 1 gj_ll _

DJ zEI\J

We may suppose that d|N; for all j € J since otherwise R, is trivially zero.

Let x(-) denote the Euler-Poincaré characteristic with respect to singular cohomology.
Inspired by Igusa’s so—called Monodromy Conjecture [D3, Conjecture 2.3.2] and the for-
mula of A’Campo [A, Theorem 3| we expect the following. For a generic projective Ej

with x(E) = 0 we should have Ry, = 0.
(5.6) When |J| = 1 then E; is in fact an exceptional variety E; and so = —]'Q—JJ In the

o
case of curves (n = 2) necessarily E; = P!, and so the condition x(E;) = 0 is equivalent
to E; intersecting exactly twice other components, say F; and E>. Then

g—1 x a-1
Roo =y + iy or 7 T v gar — 1

When s is the trivial character we have c?j} =gq—1and cf i1 = { i2r = = 1 by Remark
5.4(iii) and consequently Ry, = 0 if we would have

(5) a1 +as =0.

When s is arbitrary using Remark 5.4(ii) it is not difficult to prove that Ry, = 0 if moreover
we have d| Ny < d|Nz. (See also Example 5.7.3.) This last equivalence is implied by the
congruence

(6) N1+N2£0 mode.
Now (6) and (b) are precisely Corollary 2.4 and the example after Proposition 4.3 for
|J| = 1! In fact the nullity of Rs, was precisely the motivation for developing these

relations and congruences for n = 2 [S,M,I,L].
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Using our theory of relations in codimension one we verified in [V3] that Rs, = 0 when
expected for a lot of cases for surfaces (n = 3) and for some cases in arbitrary dimension
n, assuming that s¢ is the trivial character. When ¢ is arbitrary we verified the nullity
of Ry, is some cases for surfaces using our theory of congruences (in codimension one); a
couple of examples concerning the related topological zeta function (see (5.9)) appeared
in [V2].

Here we should mention that when n > 3 there is a whole zoo of configurations satisfying
o

x(E;) =0, and the vanishing of R, seems a bit miraculous.

(5.7) Now when |J| is arbitrary we can use the relations and congruences in arbitrary
codimension of this paper to verify analogously the nullity of Rs,. We give some examples,
assuming that the resolution (X,h) has good reduction mod P, and for simplicity also
that E'j is irreducible over an algebraic closure of K.

(5.7.1) If Ey is a projective curve then X(E‘J) = 0 if and only if £; = lo?J is an elliptic
curve, or 'y = P! and it intersects exactly twice other components. I doubt whether the
first case can occur in an embedded resolution configuration. The second case certainly
occurs and as above we have that Rs;, = 0, using Corollary 2.4 and the example after
Proposition 4.3 (for arbitrary |J|).

(5.7.2) When s is the trivial character all cases of [V3] where we verified for |J| = 1 that
Ry, = 0 can be extended to arbitrary codimension |J|.

(5.7.3) Let Ey = P™(m > 2), and let the irreducible components of intersections of E
with other Ey, ¢ ¢ J, be k hyperplanes in general position (2 < k < m + 1). One easily

sees that x(Ey) = 0.
Let first s be the trivial character. Then the numbers ¢ in the expression (x) are just

the numbers of K-rational points on the (Ej)gz. When |J| = 1 we proved in [V3] that
Ry, = 0 (by induction on n and k); the same proof is valid for arbitrary |J|. Let now s
be arbitrary (of order d).

First case : d|N; for all ¢ = 1,...,k. By Remark 5.4(ii) we have that the sheaf £, in
the formula of 5.3 is locally constant on F; and thus constant, since E; = P™ is simply
connected. Consequently the numbers ¢ are just the numbers of K-rational points on

(E1) g, and R, = 0 arguing as above.

Second case : d { N1 and d 1 Ny (after permutation of the indices). We will show that
all coefficients ¢¥ in (%) are zero, in fact more precisely that all the cohomology groups
in the expression of 5.3 for ¢ are zero, using Proposition 5.8 below. Indeed by an easy

verification or by Proposition 5.8(ii) we have that x(F;) = 0 for any relevant I D J, i.e.
for I such that J C I € JU{3,...,k} and d|N; for all i € I. Then Proposition 5.8(i)
implies the nullity of all occurring cohomology groups.

Remark now that the eventual remaining case ‘d { Ny and d|Nj; for all i = 2,... k" is

ruled out by Corollary 2.3. Indeed since PicP™ = Z this is equivalent to Zle N, =0
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mod N, which implies that d| Zle N;. It is an exercise to check that in this hypothetical
case we would in general have Ry, # 0.

(5.7.4) Using the notation of (2.6) we take D = P! x P! and let D! = D = E; be obtained
from DY by the blowingup 7; at a point P. Let the C;,i € T, consist of a fibre C; of
one projection prq : D° — P! and of two fibres Cy and C5 from the other projection pra,
such that moreover C; N Cy = {P}. Consequently the C;,i € T, consist of C,Cs, C3, and
the exceptional curve Cy of 7.

P
DO G e Cy Ci | Ey

02 03 CZ 03

In this example Congruence B states that

Pic D°

N1C1 + N2Cy + N3C3 =0 n ————.
101 + N2C2 + V33 lnNJPiCDO

Since Pic D° & pr} PicP! @ prj PicP! &2 Z @ Z this is equivalent to
N; =0 modNjy and Ny + N3 =0 mod Njy.
Furthermore Congruence A is
Ny= Ny + Ny mod Ny.

One now verifies immediately that only the following two possibilities can occur :
(i) d|N; for 1 < i < 4,
(74) d|Ny and d 1 N; for 2 < i < 4.
Case (i). As in the first case of (5.7.3) the numbers ¢¥ are the numbers of K-rational points

o)
on (E1)z. Using the structure of Pic D° and the fact that K po = pri Kpi+pri Kp:, it is not
difficult to verify that in this case the Relations B and A of §4 are {a1 = —1,az + a3 = 0}
and a4 = oy + ag, respectively. Now it is an easy exercise to compute that Rs, = 0.

Case (ii). In this case only E; and Cy := Cy \ (C3 U Cy) possibly contribute to Rs,. Both
contributions are however zero for we can show that, £,, being the sheaf of Theorem 5.3,
(7) HE((Ch) g, L) =0 for all k, and

(8) HF(Ej)g, L) =0 for all k.

o

Indeed (7) is true because of Proposition 5.8 and the fact that x(C;1) = 0. We indicate
a proof of (8), which gives the reader an idea of the arguments underlying Proposition
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5.8. First the exact sequence of cohomology with compact support for the inclusions
Ej— E;UCy <« Cq, together with (7), yields

HE (B g, L) = HY(E;UC g, £y)  for all k.

Now since FE; is affine these cohomology groups are zero for £ = 0,1. Using [SGA4%,
Sommes Trig. 1.19.1] and Poincaré duality we have

HY(E;UC)g, L) 2 HFN(E;UC) g, Lo) 2 H F((E; UC) g, L)

for all k, where ~ denotes the dual. So H¥((Ej)g,L,.) = 0 also for k = 3,4 and conse-
quently for k = 2 since x(Ey) = 0.

5.8. Proposition. Let L, be the sheaf occurring in the formula of Theorem 5.3. Let Ej
be a nonempty intersection of exceptional varieties with d|N; for all j € J, and such that
E;\ Ugyg, Fy is affine.

(i) For I D J such that d|N; for all i € I we have that

HY(EDg, L) =0 for k#n— |I| = dimEr.

(ii) If X(Ey) = 0 then for all I in (i) we have that x(E;) = 0.
Proof. See [V4] when |J| = 1. The general case is analogous. [

(5.9) Finally we introduce the related topological zeta function. Taking heuristically the
limit for ¢ — 1 in the formula in 5.3 yields

(+4) > i []—

IcS iel
Viel:d|N;

Denef and Loeser [DL] define the topological zeta function Zt(gg,(s,f) associated to
feClzy,...,x,] and d € N\{0} as the rational function (x) in the variable s. They prove
that this defining formula does not depend on the chosen resolution (X, h) by expressing
it in an exact way as a limit of Igusa’s local zeta functions.

One can also state the Monodromy Conjecture for Zt(g}))(s, f), and our vanishing results
about poles of Igusa’s local zeta function are also valid for the topological zeta function,

the latter results being easier then the first.
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