
DETERMINATION OF THE POLES OF THETOPOLOGICAL ZETA FUNCTION FOR CURVESWillem Veys�
Introduction(0.1) Let f 2 C [x1 ; :::; xn] and �x an embedded resolution (with normal crossings)h : X ! A n of f�1f0g. We denote by Ei; i 2 T , the (reduced) irreducible components ofh�1(f�1f0g), and by Ni and �i � 1 the multiplicities of Ei in the divisor of respectivelyf �h and h�(dx1 ^ :::^ dxn) on X. The (Ni; �i); i 2 T; are called the numerical data of theresolution (X; h). For I � T denote also EI := \i2IEi and �EI := EI n ([j 62IEj).De�nition. To f one associates the topological zeta functionsZtop(s) =XI�T �( �EI)Yi2I 1�i + sNiand Ztop;0(s) =XI�T �( �EI \ h�1f0g)Yi2I 1�i + sNi :Here �(�) denotes the (complex) Euler-Poincar�e characteristic. Those zeta functions areinvariants of respectively f and the germ of f at 0 and were introduced by Denef andLoeser in [DL]; the remarkable fact that the de�ning expressions do not depend on thechosen resolution is proved by expressing them as a limit of Igusa's local zeta functions.See also x1.(0.2) Each component Ei; i 2 T , induces a candidate pole s0 = � �iNi for the topologicalzeta function of f . Now it is striking that `most' candidate poles are actually bad. Thisfact would be elucidated if the following monodromy conjecture is true.1991 Mathematics Subject Classi�cation. 14B05 14H20 32S45 (11S40).Key words and phrases. Topological zeta function, curve singularities, resolution graph.�Senior research assistant of the Belgian National Fund for Scienti�c Research (N.F.W.O.)1



Conjecture [DL, (3.3.2)]. If s0 is a pole of Ztop;0(s), then e2�is0 is an eigenvalue of thelocal monodromy of f at some point of (the germ of) f�1f0g.See for example [L1,L2,V4] for some results. Assuming this conjecture we can removethe candidate poles eliminated by it; but still then very little is known about the remainingcandidate poles.(0.3) Suppose now that n = 2. Remark that in this case the topological zeta function of fcan be de�ned unambiguously (without referring to Igusa's local zeta function), using thecanonical embedded resolution of f�1f0g.Take an exceptional curve Ei intersecting exactly one or two times other componentsEj ; j 2 T , and such that �jNj 6= �iNi for these intersecting components. Then certainrelations between the occurring numerical data immediately imply that the contributionof Ei to the residue of � �iNi for Ztop(s) is zero; see x2. In a generic situation one can showthat this statement is equivalent to the monodromy conjecture.(0.4) In this paper we exactly determine all poles of Ztop;0(s) for n = 2 and anyf 2 C [x1 ; x2]. In fact when (X; h) is the canonical embedded resolution of the germof f at 0 we prove the following.Theorem. Ztop;0(s) has at most one pole of order 2. Moreover s0 is a pole of order 2 ifand only if there exist two intersecting components Ei and Ej with s0 = � �iNi = � �jNj , andin that case s0 is the pole closest to the origin.Theorem. We have that s0 is a pole of Ztop;0(s) if and only if s0 = � �iNi for someexceptional curve Ei intersecting at least 3 times other components or s0 = � 1Ni for someirreducible component Ei of the strict transform of f .(In [V1] and [V3] we proved the analog of the last theorem for Igusa's local zeta function.It does not imply the present result for the topological zeta function, see x1.)(0.5) Our proofs rely on the following new geometrical result which makes the resolutiongraph of the germ of f into an `ordered tree'. In the (dual) resolution graph we associateto each exceptional curve and to each analytically irreducible component of the stricttransform a vertex (represented respectively by a dot and a circle), and to each intersectionbetween components Ei an edge, connecting the corresponding vertices. Also to each vertexEi; i 2 T , we associate the ratio �iNi .Theorem. (i) The Ej; j 2 T , for which �jNj = mini2T �iNi , together with their edges, forma connected part M of the resolution graph. More precisely M has one of the followingforms (with r � 0) : ................................................................... ................................................................... ..................................... ..................................... �(1) �(3) ...................................................................................................................................... ...................................................................................................................................... ............. ............. ................................................ ............. ............. ................................................ : : :� � � � �E1 E2 Er(2) ................................................................................................................................................... ............. ........................ ............. ...........: : :� � � �� E1 E2 Er(4) 2



(ii) If for some exceptional curve E we have....................................... ............. ............. .................................................... ............. ............. .............� �E0 E(1) or ............. ............. .......................... ............. .............��E0 E(2)in the resolution graph with �0N0 < �N , then necessarily �N < �iNi for all other componentsEi that intersect E.(iii) Starting from an end vertex of the minimal part M, the numbers �iNi strictly increasealong any path in the tree (away from M).Remark. When f is reduced the cases (3) and (4) of (i) (and case (2) of (ii)) cannot occur.(0.6) In x1 we de�ne Igusa's local zeta function and compare it with the topological zetafunction. This section is not necessary to understand the results on Ztop;0(s), but providessome motivation and background. We �rst study the contribution of one exceptional curveEi to the residue of � �iNi for Ztop;0(s) in x2. Then in x3 we prove the ordered tree structureof the resolution graph and we study some special cases. In x4 we determine all poles ofZtop;0(s) and we conclude with some related remarks and results on Ztop(s).1. Igusa versus topological(1.1) Let K be a �nite extension of the �eld Qp of p-adic numbers, R the valuation ringof K, P the maximal ideal of R, and �K = R=P the residue �eld with cardinality q. Forz 2 K we denote by jzj its absolute value. To f(x) 2 K[x]; x = (x1; :::; xn), one associatesIgusa's local zeta functionZK(s) = ZRn jf(x)jsjdxj and ZK;0(s) = ZPn jf(x)jsjdxjfor Re s > 0, where jdxj denotes the Haar measure on Kn, normalized such that Rnhas measure 1. Igusa [I1] showed that it is a rational function of q�s, so it extends to ameromorphic function on C . See [D2] for an overview of the work on this subject.(1.2) Suppose now that f is de�ned over some number �eld F ; so we can de�ne Igusa'slocal zeta function of f with respect to any completion K of F . For simplicity choose theresolution (X; h) of (0:1) to be de�ned over F (scheme-theoretically). There is a formulafor Igusa's local zeta function in terms of (X; h) similar to the de�ning expression of thetopological zeta function.Theorem [D1, Theorem 3.1]. Denote the reductionmodP of h and �Ei; I 2 T , respectivelyby h �K and ( �EI) �K . For almost all completions K of F (i.e. for all except a �nite number)we have ZK(s) = q�nXI�T CI( �K)Yi2I q � 1q�i+sNi � 13



and ZK;0(s) = q�nXI�T CI;0( �K)Yi2I q � 1q�i+sNi � 1 ;where CI( �K) and CI;0( �K) are the number of �K-rational points on respectively ( �EI) �K and( �EI) �K \ h�1�K f0g.(1.3) Heuristically the topological zeta function is obtained as a limit when q tends to 1of a series of Igusa's local zeta functions. Denef and Loeser give in [DL] an exact meaningto this argument (using algebraic approximation and `-adic interpolation). As a corollaryto their proof of this, they also obtain the following result, which relates poles of thetopological zeta function to poles of Igusa's local zeta function.Theorem [DL, Theorem 2.2]. Let f 2 F [x1; :::; xn] for some number �eld F . When s0 is apole of Ztop(s) (respectively Ztop;0(s)), then for almost all completions K of F , there existin�nitely many unrami�ed extensions L of K such that s0 is a pole of ZL(s) (respectivelyZL;0(s)).(1.4) So roughly a pole of the topological zeta function induces a pole of Igusa's local zetafunction. (Intuitively this is already clear by the limit argument.) Now it is still an openquestion if conversely a pole of ZK;0(s) always induces a pole of Ztop;0(s). In fact theresults of this paper yield an a�rmative answer to this question when n = 2, since we willprove for Ztop;0(s) the analog of the following result.Theorem ([V1, Corollary 3.3] and [V3, Theorem III4.1]). Let f 2 F [x1; x2] for some (bigenough) number �eld F and suppose that (X; h) is the canonical embedded resolution ofthe germ of f at 0. Then for almost all completions K of F we have that s0 is a pole ofZK;0(s) if and only if s0 = � �iNi for some exceptional curve Ei that intersects at least 3times other Ej ; j 2 T , or s0 = � 1Ni for some irreducible component of the strict transformof f . 2. Contribution of one exceptional curve(2.1) From now on we suppose that n = 2 and we �x f 2 C [x; y]. Let (X; h) be thecanonical embedded resolution (with normal crossings) of the germ of f�1f0g at 0. So inparticular h is a �nite succession of blowing-ups, and no `unnecessary' blowing-ups occur.We denote by Ei; i 2 T = Te [ Ts, the (reduced) irreducible components of h�1(f�1f0g),where Ei is an exceptional curve for i 2 Te and an irreducible component of the stricttransform of f�1f0g for i 2 Ts. For each i 2 T let Ni and �i � 1 be the multiplicities ofEi in the divisor of respectively f � h and h�(dx ^ dy) on X. We have Ni; �i � 1 and if fis reduced, then (Ni; �i) = (1; 1) for i 2 Ts. 4



(2.2) Denote �Ei := Ei n [j 6=iEj for i 2 Te. Then the de�ning expression for Ztop;0(s)reduces to Ztop;0(s) = Xj2Te �( �Ej)�j + sNj + Xfi;jg�T �(Ei \ Ej)(�i + sNi)(�j + sNj) :(2.3) Fix now one exceptional curve E, intersecting k times other components E1; :::; Ek.For all i = 1; :::; k suppose that �iNi 6= �N and set �i = �i � �NNi. Then the contribution ofE to the residue of � �iNi for Ztop;0(s) isR := 1N (2� k + kXi=1 1�i ) :We will prove in Proposition 2.8 that R cannot be zero if k � 3. Therefore we need thefollowing relations and inequalities for the �i.2.4. Theorem [L1, Lemme II.2]. Let the exceptional curve E intersect k times othercomponents E1; :::; Ek and set �i = �i � �NNi for i = 1; :::; k. ThenkXi=1 �i = k � 2 :(For a short conceptual proof and generalizations, see [V2].)2.5. Remark. Theorem 2.4 immediately implies what we claimed in (0.3), i.e. that R = 0when Ej intersects exactly 1 or 2 times other components.2.6. Proposition [L1, Proposition II.3.1]. Let the exceptional curve E intersect k timesother components E1; :::; Ek and set �i = �i � �NNi for i = 1; :::; k. For all i = 1; :::; k wehave that �1 � �i < 1, equality occurring if and only if k = 1.2.7. Corollary.(i) At most one Ei; 1 � i � k, occurs such that �i < 0 (, �iNi < �N ).(ii) If k � 3 then at most one Ei; 1 � i � k, occurs such that �i � 0 (, �iNi � �N ).(iii) If k = 2 then �1N1 < �N , �N < �2N2 .Proof. Almost trivial from 2.4 and 2.6; see also [V1, Corollary 2.2]. �2.8. Proposition. Fix one exceptional curve E, intersecting k � 3 times other compo-nents E1; :::; Ek and such that �iNi 6= �N for all i = 1; :::; k. Then the contribution R of Eto the residue of � �N for Ztop;0(s) is never zero; more precisely(i) R > 0, �iNi > �N for all i = 1; :::; k and5



(ii) R < 0, �iNi < �N for some (and thus exactly one) i 2 f1; :::; kg.Proof. Set �i = �i � �NNi for i = 1; :::; k.(i) In this case all �i satisfy 0 < �i < 1 (by Proposition 2.6), implying that R > 2N .(ii) Say that �kNk < �N ; so �k < 0 and 0 < �i < 1 for i = 1; :::; k� 1. By Theorem 2.4 wehave that ��k =Pk�1i=1 �i + 2� k and thusR = 1N (2� k + k�1Xi=1 1�i � 1Pk�1i=1 �i + 2� k ) :Then it is clear that R < 0 by Lemma 2.9 below. �2.9. Lemma. Let k 2 N ; k � 3, and 0 < �i < 1 for i = 1; :::; k � 1 such that0 <Pk�1i=1 �i + 2� k. Then2� k + k�1Xi=1 1�i � 1Pk�1i=1 �i + 2� k < 0 :Proof. First it is easy to verify the following claim. Let 0 < a < 1, 0 < b < 1 and0 < a+ b� 1. Then(�) �1 + 1a + 1b � 1a+ b� 1 < 0 :We now proceed by induction on k. The case k = 3 is just (�). So take k � 3 andsuppose that the lemma is true for k. We have to prove thatR := 1� k + kXi=1 1�i � 1Pki=1 �i + 1� kis strictly negative, assuming that(1) 0 < �i < 1 for i = 1; :::; kand(2) 0 < kXi=1 �i + 1� k :We decompose R as R = R1 +R2 whereR1 := 2� k + k�1Xi=1 1�i � 1Pk�1i=1 �i + 2� k6



and R2 := �1 + 1�k + 1Pk�1i=1 �i + 2� k � 1Pki=1 �i + 1� k :Now from (1) and (2) we can derive(3) 0 < k�1Xi=1 �i + 2� k < 1 :The induction hypothesis and the �rst inequality of (3) imply that R1 < 0; furthermoresince 0 < �k < 1 and by (3) and (2), the fact that R2 < 0 is just the claim (�). �2.10. Remark. From Proposition 2.8 it is already clear that s0 is a pole of Ztop;0(s) ifs0 2 f� �iNi ji 2 Teg n f� �iNi ji 2 Tsg, s0 = � �jNj for exactly one j 2 Te, and Ej intersectsat least 3 other components. Now both cases (i) and (ii) of Proposition 2.8 can occurfor varying exceptional curves; so a priori it is not clear whether the contributions to theresidue of di�erent exceptional curves Ej with the same �jNj can add to zero. The `orderedtree' structure of the resolution graph, determined in the next section, will imply that sucha cancellation cannot happen, for we will show that case (i) of Proposition 2.8 occurs forat most one exceptional curve.3. The `ordered tree' structure of the resolution graph(3.1) We suppose that the germ of f at 0 does not already have normal crossings, i.e. that(f; 0) is not analytically isomorphic to (xN ; 0) or (xNyN 0 ; 0). (In these cases Ztop;0(s) isrespectively 11+Ns and 1(1+Ns)(1+N 0s) .)(3.2) In the (dual) embedded resolution graph of the germ of f at 0 one associates toeach exceptional curve a vertex (represented by a dot) and to each intersection betweenexceptional curves an edge, connecting the corresponding vertices. Here we also associateto each analytically irreducible component of the strict transform a vertex (represented bya circle), and to its (unique !) intersection with an exceptional curve a corresponding edge.By the algorithm of embedded resolution it is clear that this graph is a (�nite) tree withall circles end vertices.Convention : we will picture a vertex with at least (e.g.) 3 edges as................................................................... ................................................................... ..................................... ..................................... � .Now to each vertex Ei; i 2 T , we associate the ratio �iNi . The following theorem makes theresolution graph into an ordered tree with respect to the �iNi ; i 2 T .7



3.3. Theorem. (i) The Ej ; j 2 T , for which �jNj = mini2T �iNi , together with their edges,form a connected partM of the resolution graph. More preciselyM has one of the followingforms (with r � 0) : ................................................................... ................................................................... ..................................... ..................................... �(1) �(3) ...................................................................................................................................... ...................................................................................................................................... ............. ............. ................................................ ............. ............. ................................................ : : :� � � � �E1 E2 Er(2) ................................................................................................................................................... ............. ........................ ............. ...........: : :� � � �� E1 E2 Er(4)(ii) If for some exceptional curve E we have....................................... ............. ............. .................................................... ............. ............. .............� �E0 E(1) or ............. ............. .......................... ............. .............��E0 E(2)in the resolution graph with �0N0 < �N , then necessarily �N < �iNi for all other componentsEi that intersect E.(iii) Starting from an end vertex of the minimal part M, the numbers �iNi strictly increasealong any path in the tree (away from M).Proof. Corollary 2.7 yields (ii), which clearly implies (iii) and the fact thatM is connected.We now prove the classi�cation of (i) for M.For i 2 Te let ki denote the number of intersections of Ei with other components. Takean exceptional curve Ei belonging toM (if possible). By Theorem 2.4 we have that ki 6= 1.If ki = 2 then Corollary 2.7(iii) implies that the two intersecting components of Ei alsobelong toM. Continuing the same argument yields thatM must contain a chain as in (2)or (4) with r � 1, and then by Corollary 2.7(ii) we have that M must be exactly such achain. Finally when M does not contain any exceptional curve Ei with ki = 2, then againCorollary 2.7(ii) implies that M must be of the form (1) or (3), or (2) or (4) with r = 0.�Notation : Further in this section we still denote by M the minimal part of Theorem 3.3.3.4. Remark. (a) Suppose that f is reduced. Then the algorithm of embedded resolutioneasily implies that �i � Ni for i 2 Te and that �i < Ni if Ei intersects the strict transform.Consequently the cases (3) and (4) of (i) (and case (2) of (ii)) cannot occur in Theorem3.3. On the other hand in (i) there exist examples of case (1) and case (2) for any r � 0.(b) Moreover there exist examples (with non-reduced f) of case (3) and case (4) for anyr � 0. See also Proposition 3.8.3.5. Example. When f is analytically irreducible at 0 (with g di�erent Puiseux exponents),then the resolution graph has the following form.8



. . . . ........................................................... ...................� � � . . . . ........................................................... ...................� � � . . . . ........................................................... ...................� � �.................................................................................................... .... .............................................................................. �� .................................................................................................... .... .............................................................................. �� .................................................................................................... .... .............................................................................. �� .................................................................................................... .... .............................................................................. �� .................................................................................................... .... .............................................................................. ��� � � � �� �: : :.......................................................... ................... .......................................................... ...................E1 E2 E3 Eg�1 Eg.................................................. ..................................................................................................................... .... .............................................................................. ��� � ..............................................................................Its minimal partM consists just of E1 and the ratio �iNi strictly increases in the sense of thearrows. This fact was already discovered by Strauss [S, Corollary 2.1] through complicatedcomputations. It is also implied by the following more general result.3.6. Proposition. If the resolution graph contains a part of the form below, then theminimal part M is E. .............................................................................................................................. .............................................................................................................................. ...... ...... ............. ............. .......................... ............. .............���� ��� EE1E2E01E02Proof. Let E intersect E1; E2; :::; Ek(k � 3) and set �i = �i � �NNi for i = 1; :::; k. Anappropriate combination of Theorem 2.4 for all components on the path connecting E1to E01 yields that �1 = N 01N (see also [I1] or [L1]). Now for example by [L1, Lemme II.2]we have that N 01jN and so �1 � 12 . The same argument yields �2 � 12 and then againTheorem 2.4, now applied to E, implies that Pki=3 �i � k � 3. Since for i = 3; :::; k wehave that �i < 1 (Proposition 2.6) we must also have that 0 < �i. �Remark. In particular this implies that the resolution graph can contain at most one partof the described form. (One can also see this by proving that in such a part E01 or E02must be the �rst created exceptional curve in the resolution process.) So we obtain animportant restriction on the shape of the (pure) resolution tree using our result on the`ordered tree' structure with respect to the �iNi .(3.7) We already mentioned in Remark 3.4 that an analytically irreducible component ofthe strict transform cannot be part of the minimal set M if f is reduced. In fact the cases(3) and (4) of Theorem 3.3(i) are quite rare; they are only possible if some irreduciblecomponent of f�1f0g is smooth at 0 and occurs moreover with `high' multiplicity in thedivisor of f , as shown below.3.8. Proposition. Let f = Qi2I fNii be the decomposition of f in irreducible factors,and denote by �i the multiplicity of fi at 0. If the minimal setM in Theorem 3.3(i) is as incase (3) (respectively case (4)), then there exists j 2 I such that E is the strict transformof f�1j f0g and such that �j = 1 and Nj >Pi 6=j �iNi (respectively Nj �Pi 6=j �iNi).�E(3) ................................................................................................................................................... ............. ........................ ............. ...........: : :� � � ��E(4) 9



Proof. A priori it is not clear that E is the strict transform of some f�1i f0g, it could be ananalytically irreducible component of it. So let E be an analytically irreducible componentof the strict transform of f�1j f0g, and denote by E0 the exceptional curve intersecting E.............. ............. .......................... ............. .............��E E0Let E1 be the �rst created exceptional curve in the resolution process; it has numericaldata (N1; �1) = (Pi2I �iNi; 2). Using the algorithm of embedded resolution it is notdi�cult to show that if �1N1 � 1Nj , then also �0N 0 � 1Nj (respectively if �1N1 < 1Nj , thenalso �0N 0 < 1Nj ). Now in case (3) we have that 1Nj < �0N 0 , and thus 1Nj < �1N1 , which isequivalent to Pi 6=j �iNi < (2 � �j)Nj. Clearly this is only possible if �j = 1 (whichimplies that f�1j f0g is analytically irreducible) and consequently Nj > Pi 6=j �iNi. Case(4) is analogous. �3.9. Example. Take f = xN (y2� x3)N 0 . Let E1; E2 and E3 denote the exceptional curves(ordered as created), and E and E0 the strict transforms of respectively fx = 0g andfy2 � x3 = 0g. The resolution graph and numerical data are as follows.� � �� �E E0E1 E2E3 E(N;1)E0(N 0;1) E1(N + 2N 0;2)E2(N + 3N 0;3)E3(2N + 6N 0;5)As N and N 0 vary, cases (1), (3) and (4) of Theorem 3.3(i) can occur :case (1) ,M is �E3 , N < 2N 0,case (4) ,M is � ��E E1 E3 , N = 2N 0,case (3) ,M is �E , N > 2N 0.(3.10) LetQki=1(y��ix)ai be the decomposition in linear factors of the lowest degree termof f (so k � 1 and all �i are di�erent). Let also E denote the �rst created exceptionalcurve in the resolution process; it has numerical data (N; �) = (Pki=1 ai; 2). We will provethat if k � 3 and if the ai di�er `not to much', then the minimal set M is just E.At the stage of the process when E is just created it intersects exactly k times thestrict transform of f�1f0g in points P1; :::; Pk corresponding to the tangent directions in0, determined by respectively fy��1x = 0g; :::; fy��kx = 0g. We leave the following factas an exercise for the reader. 10



Lemma. For i = 1; :::; k let Ei denote the component in the resolution space X thatintersects E in the point corresponding to Pi. Then there exists `i 2 N such thatNi = `iN + ai and �i = `i� + 1.3.11. Proposition. Let Qki=1(y � �ix)ai be the decomposition in linear factors of thelowest degree term of f and let E denote the �rst created exceptional curve in the resolutionprocess.(i) Suppose that k � 3. Then M is E if and only if for all i = 1; :::; k we have thatai <P` 6=i a`. Also M strictly contains E if and only if ai =P` 6=i a` for some (and thusexactly one) i 2 f1; :::; kg.(ii) Suppose that k = 2. Then M contains E if and only if a1 = a2.Proof. Using the notations of (3.10), we have for i = 1; :::; k that the inequality �N < �iNiis equivalent to �N < 1ai (by the lemma) and thus also to ai < P` 6=i a`. Analogously�N = �iNi , ai =P` 6=i a`. All statements follow now easily. �Remark. In Example 3.9 the case N = 2N 0 is an example of Proposition 3.11 (ii).(3.12) To conclude this section we mention that Theorem 3.3 can easily be generalizedfor an arbitrary embedded resolution of the germ of f at 0. The only di�erence for anarbitrary resolution is that the cases (2) and (4) of (i) must be extended to� � � � �E1 E2 Er(2) ................................................................................................................................................... ............. ........................ ............. ..................................... .......................... .................................................... .......................... ..........................: : :� � � �� E1 E2 Er(4) ,i.e. the `connecting' exceptional curves E1; :::; Er can intersect more than 2 other compo-nents. The statements (ii) and (iii) remain valid.4. Poles of the topological zeta function(4.1) We are now ready to determine all poles of Ztop;0(s), using the `residue contribution'result of Proposition 2.8 and the ordered tree structure of the resolution graph. FirstTheorem 3.3 immediately implies that there is at most one pole of order two.4.2. Theorem. Ztop;0(s) has at most one pole of order 2. Moreover s0 is a pole of order2 if and only if there exist two intersecting components Ei and Ej with s0 = � �iNi = � �jNj ,and in that case s0 is the pole closest to the origin.Such a pole occurs if and only if we have the case (2) or (4) in Theorem 3.3(i). Moreoverwhen f is reduced only case (2) is possible. 11



4.3. Theorem. We have that s0 is a pole of Ztop;0(s) if and only if s0 = � �iNi for someexceptional curve Ei intersecting at least 3 times other components or s0 = � 1Ni for someirreducible component Ei of the strict transform of f .Proof. Clearly s0 can only be a pole if one of these conditions is satis�ed (even if s0 hasorder 2). Conversely let now s0 = � �iNi exactly for i 2 I � T . Two possibilities occur.(I) The Ei; i 2 I, form the minimal part M of Theorem 3.3(i). If M has the form (1)or (3), respectively (2) or (4), then s0 is a pole of order 1, respectively 2. For case (1) thisis implied by Proposition 2.8(i), the other cases are trivial.(II) No Ei; i 2 I, belongs to M. By Remark 2.5 we have that Ei; i 2 I, can onlycontribute to the residue of s0 if i 2 Ts or if i 2 Te and Ei intersects at least 3 othercomponents. Now by respectively Theorem 3.3(iii) and Proposition 2.8(ii) all such contri-butions are strictly negative. Since by assumption there is at least one contribution we aredone. �Remark. Theorems 4.2 and 4.3 are trivially true for the cases excluded in (3.1).(4.4) More generally Denef and Loeser [DL] associate to r 2 N n f0g and f 2 C [x; y] thetopological zeta functionZ(r)top;0(s) = Xj2TerjNj �( �Ej)�j + sNj + Xfi;jg�TrjNi;rjNj �(Ei \ Ej)(�i + sNi)(�j + sNj) :(Of course this is possible in any dimension and also globally.) This expression is obtainedas a limit of Igusa's local zeta functions, twisted by a character of order r, see [DL].The analog of Theorem 4.2 remains true for Z(r)top;0(s) but we cannot expect results asin Theorem 4.3. To see this �x one exceptional curve E with rjN , intersecting k � 3times other components E1; :::; Ek. For all i = 1; :::; k suppose that �iNi 6= �N and set�i = �i � �NNi. The contribution R(r) of E to the residue of s0 = � �N for Z(r)top;0(s) isR(r) = 1N (2� k + kXi=1rjNi 1�i ):The fact that not necessarily all i = 1; :::; k occur in the sum above yields that R(r) cansometimes be zero.An easy example is f = xN1yN2(x � y)N3(x+ y)N4 where 3N1 = N2 + N3 + N4, rjN1and r - Ni for i = 2; 3; 4. Its unique exceptional curve has numerical data (4N1; 2),intersects the 4 other components, but does not induce a pole of Z(r)top;0(s); in fact Z(r)top;0(s)is identically zero.(4.5) Suppose that f is de�ned over some number �eld F . Then for almost all completionsK of F we have that Theorem 3.3 immediately implies the analog of Theorem 4.2 for12



Igusa's local zeta function ZK;0(s). So ZK;0(s) has at most one pole of order 2 and if so,this pole of order 2 is the pole closest to the origin. This is a new result, re�ning [L1,Lemme IV.2.3] and [V3, III4].(4.6) We conclude with some remarks on the `global' zeta function Ztop(s). We supposenow that (X; h) is the canonical embedded resolution of f�1f0g in A 2 and keep using allother notations of (2.1). Now f�1f0g can have several singular points, which all contributeto the zeta function.(i) One easily sees that Theorem 4.2 cannot be true for Ztop(s); of course it is still truethat s0 is a pole of order 2 if and only if there exist two intersecting components Ei andEj with s0 = � �iNi = � �jNj , but an arbitrary number of poles of order 2 can occur.(ii) Also Theorem 4.3 is in general not true for Ztop(s). To �nd a counterexample onecan search for a curve f�1f0g with (at least 2) singularities Pi, each producing in its localresolution an exceptional curve Ei (intersecting at least 3 times other components), suchthat all Ei have the same ratio of numerical data �iNi , and such that all contributions Ri tothe residue of s0 = � �iNi for Ztop(s) satisfyPiRi = 0. A concrete example with moreoverf irreducible isf = [y3(y2 � x2) + x6] � [y3(y2 � (x� 1)2) + (x� 1)6] � 5Yi=1(y � �i(x+ 1)) + yNwhere N is big enough. It has 3 singular points : an ordinary 5-fold singularity and twotimes the germ of fy3(y2�x2)+x6 = 0g at 0; their contribution to the residue of s0 = � 25for Ztop(s) is respectively 1615 and two times � 815 .(iii) When f is reduced it is still true that s0 = �1 (induced by the strict transform off�1f0g) is always a pole of Ztop(s), since in this case all contributions to its residue arestrictly negative (see Remark 3.4).(4.7) We can give a negative answer to the analogous question in (1.4) for Ztop(s) andZK(s). I.e. if f is de�ned over a number �eld F then it can happen that s0 is a poleof ZK(s) for almost all completions K of F , but that it is not a pole of Ztop(s). Thisfollows from (4.6(ii)) and [V1, Theorem 3.2], where we proved that an exceptional curveEi, intersecting at least 3 times other components, always induces a pole of ZK(s) foralmost all completions K of a big enough F .References[D1] J. Denef, On the degree of Igusa's local zeta function, Amer. J. Math. 109 (1987), 991{1008.[D2] J. Denef, Report on Igusa's local zeta function, S�em. Bourbaki 741, Ast�erisque 201/202/203 (1991),359{386.[DL] J. Denef and F. Loeser, Caract�eristiques d'Euler{Poincar�e, fonctions zeta locales, et modi�cationsanalytiques, J. Amer. Math. Soc. 5, 4 (1992), 705{720.[I1] J. Igusa, Complex powers and asymptotic expansions I, J. Reine Angew. Math. 268/269 (1974),110{130; II, ibid. 278/279 (1975), 307{321. 13
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