DETERMINATION OF THE POLES OF THE
TOPOLOGICAL ZETA FUNCTION FOR CURVES

WILLEM VEYS*

INTRODUCTION

(0.1) Let f € Clzy,...,z,] and fix an embedded resolution (with normal crossings)
h:X — A" of f~1{0}. We denote by E;,i € T, the (reduced) irreducible components of
h=1(f=1{0}), and by N; and v; — 1 the multiplicities of F; in the divisor of respectively
fohand h*(dzy A...Adx,) on X. The (N;,v;),i € T, are called the numerical data of the

resolution (X, h). For I C T denote also Et := NijerE; and Er := Er \ (UjgrEj).

Definition. To f one associates the topological zeta functions

Zion(s) = Y x(ED [
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1

Ziopo(8) = 3 x(BEr 0 b HOW | e
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Here x(-) denotes the (complex) Euler-Poincaré characteristic. Those zeta functions are
invariants of respectively f and the germ of f at 0 and were introduced by Denef and
Loeser in [DL]; the remarkable fact that the defining expressions do not depend on the
chosen resolution is proved by expressing them as a limit of Igusa’s local zeta functions.
See also §1.

(0.2) Each component E;,¢ € T, induces a candidate pole sp = —g& for the topological
zeta function of f. Now it is striking that ‘most’ candidate poles are actually bad. This
fact would be elucidated if the following monodromy conjecture is true.
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Conjecture [DL, (3.3.2)]. If so is a pole of Zyop0(s), then €™ is an eigenvalue of the
local monodromy of f at some point of (the germ of) f~*{0}.

See for example [L1,1.2,V4] for some results. Assuming this conjecture we can remove
the candidate poles eliminated by it; but still then very little is known about the remaining
candidate poles.

(0.3) Suppose now that n = 2. Remark that in this case the topological zeta function of f
can be defined unambiguously (without referring to Igusa’s local zeta function), using the
canonical embedded resolution of f=1{0}.

Take an exceptional curve F; intersecting exactly one or two times other components
Ej,j € T, and such that 1’(,—2 % for these intersecting components. Then certain
relations between the occurring numerical data immediately imply that the contribution
of E; to the residue of — K/‘l for Ziop(s) is zero; see §2. In a generic situation one can show
that this statement is equivalent to the monodromy conjecture.

(0.4) In this paper we exactly determine all poles of Zi,0(s) for n = 2 and any
f € Clzy,z2]. In fact when (X,h) is the canonical embedded resolution of the germ
of f at 0 we prove the following.

Theorem. Zi,, (s) has at most one pole of order 2. Moreover sy is a pole of order 2 if

and only if there exist two intersecting components E; and E; with so = — ¢ = —%, and
i J

in that case sqg is the pole closest to the origin.

Theorem. We have that so is a pole of Z, o(s) if and only if s = —g- for some

exceptional curve E; intersecting at least 3 times other components or sg = —ﬁ for some

irreducible component E; of the strict transform of f.

(In [V1] and [V3] we proved the analog of the last theorem for Igusa’s local zeta function.
It does not imply the present result for the topological zeta function, see §1.)

(0.5) Our proofs rely on the following new geometrical result which makes the resolution
graph of the germ of f into an ‘ordered tree’. In the (dual) resolution graph we associate
to each exceptional curve and to each analytically irreducible component of the strict
transform a vertex (represented respectively by a dot and a circle), and to each intersection
between components F; an edge, connecting the corresponding vertices. Also to each vertex
E;,1 €T, we associate the ratio %

Theorem. (i) The Ej,j € T, for which K,—JJ = minjer §-, together with their edges, form
a connected part M of the resolution graph. More precisely M has one of the following
forms (withr >0) :

E,  E, Ey

(3) o— (4) o o e ... -
E, E5 E,



(ii) If for some exceptional curve E we have

(1) e Sl or (2) o— e«
//EO E\\ EO E\\

Vi
N;

in the resolution graph with K,—?) < 4, then necessarily £ < for all other components
E; that intersect E.
(iii) Starting from an end vertex of the minimal part M, the numbers ¢+ strictly increase

along any path in the tree (away from M).
Remark. When f is reduced the cases (3) and (4) of (i) (and case (2) of (ii)) cannot occur.

(0.6) In §1 we define Igusa’s local zeta function and compare it with the topological zeta
function. This section is not necessary to understand the results on Zi,p o(s), but provides
some motivation and background. We first study the contribution of one exceptional curve
E; to the residue of —% for Ziop,0(s) in §2. Then in §3 we prove the ordered tree structure
of the resolution graph and we study some special cases. In §4 we determine all poles of
Ztop,0(s) and we conclude with some related remarks and results on Zi,p(s).

1. IGUSA VERSUS TOPOLOGICAL

(1.1) Let K be a finite extension of the field Q, of p-adic numbers, R the valuation ring
of K, P the maximal ideal of R, and K = R/P the residue field with cardinality ¢q. For
z € K we denote by |z| its absolute value. To f(z) € K|z],x = (21, ..., Z,), one associates
Igusa’s local zeta function

Zi) = [ Vf@Pldsl  and Zicols) = [ 7@ lds

for Re s > 0, where |dz| denotes the Haar measure on K™, normalized such that R"
has measure 1. Igusa [I1] showed that it is a rational function of ¢~%, so it extends to a
meromorphic function on C. See [D2] for an overview of the work on this subject.

(1.2) Suppose now that f is defined over some number field F'; so we can define Igusa’s
local zeta function of f with respect to any completion K of F'. For simplicity choose the
resolution (X, h) of (0.1) to be defined over F' (scheme-theoretically). There is a formula
for Igusa’s local zeta function in terms of (X, h) similar to the defining expression of the
topological zeta function.

Theorem [D1, Theorem 3.1]. Denote the reduction mod P of h and E;, I € T, respectively

by hg and (Ep)g. For almost all completions K of F' (i.e. for all except a finite number)

we have )
. _ q-—
Zr(s)=q7" Y i) | —m—
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and

L o ¢—1
Zio(s) = a7 3 OrolB) [ Zimr =1
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where Cy(K) and Cro(K) are the number of K -rational points on respectively (E[) g and
(Eng nhg{o}.

(1.3) Heuristically the topological zeta function is obtained as a limit when ¢ tends to 1
of a series of Igusa’s local zeta functions. Denef and Loeser give in [DL] an exact meaning
to this argument (using algebraic approximation and ¢-adic interpolation). As a corollary
to their proof of this, they also obtain the following result, which relates poles of the
topological zeta function to poles of Igusa’s local zeta function.

Theorem [DL, Theorem 2.2|. Let f € F[zy, ..., x,] for some number field F. When s, is a
pole of Zyo,(s) (respectively Ziop 0(s)), then for almost all completions K of F', there exist
infinitely many unramified extensions L of K such that s is a pole of Z1,(s) (respectively

Zr0(s)).

(1.4) So roughly a pole of the topological zeta function induces a pole of Igusa’s local zeta
function. (Intuitively this is already clear by the limit argument.) Now it is still an open
question if conversely a pole of Zk ¢(s) always induces a pole of Zio, 0(s). In fact the
results of this paper yield an affirmative answer to this question when n = 2, since we will
prove for Ziop 0(s) the analog of the following result.

Theorem ([V1, Corollary 3.3] and [V3, Theorem I114.1]). Let f € F[x1, x2] for some (big
enough) number field F' and suppose that (X, h) is the canonical embedded resolution of
the germ of f at 0. Then for almost all completions K of F' we have that sq is a pole of

Zk,0(s) if and only if so = — %= for some exceptional curve E; that intersects at least 3
times other E;, 5 € T', or sy = —ﬁ for some irreducible component of the strict transform
of f.

2. CONTRIBUTION OF ONE EXCEPTIONAL CURVE

(2.1) From now on we suppose that n = 2 and we fix f € C[z,y]. Let (X,h) be the
canonical embedded resolution (with normal crossings) of the germ of f~1{0} at 0. So in
particular h is a finite succession of blowing-ups, and no ‘unnecessary’ blowing-ups occur.
We denote by E;,i € T =T, UTs, the (reduced) irreducible components of h=1(f~1{0}),
where FE; is an exceptional curve for ¢ € T, and an irreducible component of the strict
transform of f~1{0} for i € T,. For each i € T let N; and v; — 1 be the multiplicities of
E; in the divisor of respectively f o h and h*(dz A dy) on X. We have N;,v; > 1 and if f
is reduced, then (N;,v;) = (1,1) for i € Ts.



(2.2) Denote E; := E; \ Ujx; E; for ¢ € T.. Then the defining expression for Zi.p o(s)

reduces to
(o]

X(Ej)
I/j + SNj

X(EZ N EJ)

Zio = .
t P,O(S) (Vi + SNi)(l/j + SN]')

jETe
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(2.3) Fix now one exceptional curve F, intersecting k times other components Ej, ..., .
For all « = 1, ..., k suppose that ]’Q—Z # « and set a; = v; — £ IN;. Then the contribution of
E to the residue of —& for Ziopo(s) is

A

1 o1
= —(2—k ).
R N( +Zai)

=1

We will prove in Proposition 2.8 that R cannot be zero if k¥ > 3. Therefore we need the
following relations and inequalities for the «;.

2.4. Theorem [L1, Lemme II.2]. Let the exceptional curve E intersect k times other
components Ey, ..., By and set a; = v; — ;N; for e = 1,..., k. Then

k
Zai:k—l
i=1

(For a short conceptual proof and generalizations, see [V2].)

2.5. Remark. Theorem 2.4 immediately implies what we claimed in (0.3), i.e. that R =0
when E; intersects exactly 1 or 2 times other components.

2.6. Proposition [L1, Proposition I1.3.1]. Let the exceptional curve E intersect k times
other components Ey, ..., By and set a; = v; — £ N; fori=1,....k. Foralli=1,....k we
have that —1 < «; < 1, equality occurring if and only if k = 1.

2.7. Corollary.

(i) At most one E;,1 <14 < k, occurs such that a; <0 (& - < %)

(ii) If k > 3 then at most one E;,1 < i < k, occurs such that o; <0 (& 1 < £).
(iii) If k=2 then - < £ & £ < £

Proof. Almost trivial from 2.4 and 2.6; see also [V1, Corollary 2.2]. [ |

2.8. Proposition. Fix one exceptional curve F, intersecting k > 3 times other compo-
nents Ei, ..., By, and such that §- # + for all i = 1,...,k. Then the contribution R of E
to the residue of — % for Zyop 0(s) is never zero; more precisely

)R>0e X > % foralli=1,..,k and
N; N




(i) R < 0 & ]’(,—’l < % for some (and thus exactly one) i € {1, ..., k}.

Proof. Set a; = v; — N fori=1,... k.
(i) In this case all a; satisfy 0 < a; < 1 (by Proposition 2.6), implying that R > .
(ii) Say that ]’(,—’; < fsoap<0and 0 <o <1fori=1,..,k—1. By Theorem 2.4 we

have that —ay, = Z;:ll a; + 2 — k and thus

1 1 1
R=—=02-k+ — - .
N( ;Ozi Zfz_llai—l—Z—k)
Then it is clear that R < 0 by Lemma 2.9 below. [ |

2.9. Lemma. Let Kk € NNk > 3, and 0 < a; < 1 for i« = 1,....,k — 1 such that
0< Z?_ll a; +2 — k. Then

k—ll 1
2—k+ — = <0
iz:;ai Z?:_llai+2_k

Proof. First it is easy to verify the following claim. Let 0 < a < 1, 0 < b < 1 and
0<a+0b—1. Then

1 1 1
-14+-+-—-———<0.
(+) +a+b a+b—1

We now proceed by induction on k. The case k = 3 is just (x). So take k > 3 and
suppose that the lemma is true for k. We have to prove that

1 1
Ri=1-k+> —— —
il Y Ytk
is strictly negative, assuming that
(1) O<a;<lfori=1,..k
and
k
(2) 0<> o+1—k.
i=1

We decompose R as R = R + Rs where

k—1

1 1
Ry:=2-k+Y ——
;O‘i YT i +2—k




and . ) .
Ryi=—1+4—+ —— - — .
ag Yol +2—-k Y o +1—k

Now from (1) and (2) we can derive

k—1
(3) 0<) ai+2-k<1.

=1

The induction hypothesis and the first inequality of (3) imply that R; < 0; furthermore
since 0 < o < 1 and by (3) and (2), the fact that Re < 0 is just the claim (). |

2.10. Remark. From Proposition 2.8 it is already clear that sy is a pole of Ziop 0(s) if
so € {—gtli € T} \ {—-|i € T}, so = —K,—JJ for exactly one j € T, and Ej intersects
at least 3 other components. Now both cases (i) and (ii) of Proposition 2.8 can occur
for varying exceptional curves; so a priori it is not clear whether the contributions to the
residue of different exceptional curves E; with the same N can add to zero. The ‘ordered
tree’ structure of the resolution graph, determined in the next section, will imply that such
a cancellation cannot happen, for we will show that case (i) of Proposition 2.8 occurs for
at most one exceptional curve.

3. THE ‘ORDERED TREE’ STRUCTURE OF THE RESOLUTION GRAPH

(3.1) We suppose that the germ of f at 0 does not already have normal crossings, i.e. that
(,0) is not analytically isomorphic to (zV,0) or (zNyN',0). (In these cases Ziop o(s) is
respectively TINS and WM)

(3.2) In the (dual) embedded resolution graph of the germ of f at 0 one associates to
each exceptional curve a vertex (represented by a dot) and to each intersection between
exceptional curves an edge, connecting the corresponding vertices. Here we also associate
to each analytically irreducible component of the strict transform a vertex (represented by
a circle), and to its (unique !) intersection with an exceptional curve a corresponding edge.
By the algorithm of embedded resolution it is clear that this graph is a (finite) tree with
all circles end vertices.

Convention : we will picture a vertex with at least (e.g.) 3 edges as

—
—_

—_

Now to each vertex Fj;,i € T, we associate the ratio g&-. The following theorem makes the

V@

resolution graph into an ordered tree with respect to the L eT.



3.3. Theorem. (i) The Ej,j € T, for which 1+ = min;er ~» together with their edges,

form a connected part M of the resolution graph More precisely M has one of the following
forms (withr > 0) :

=
/
\/
©
/
\/
I\
\

\
!

B, Es E,
(3) o— (4) o—eo o =
By E E,
(ii) If for some exceptional curve E we have
(1) : >» o« : or (2) o—o%
EO E ~ EO E ~

in the resolution graph with ”0 < %>
E; that intersect E.

(iii) Starting from an end vertex of the minimal part M, the numbers % strictly increase
along any path in the tree (away from M).

Proof. Corollary 2.7 yields (ii), which clearly implies (iii) and the fact that M is connected.
We now prove the classification of (i) for M.

For i € T, let k; denote the number of intersections of F; with other components. Take
an exceptional curve F; belonging to M (if possible). By Theorem 2.4 we have that k; # 1.
If k; = 2 then Corollary 2.7(iii) implies that the two intersecting components of E; also
belong to M. Continuing the same argument yields that M must contain a chain as in (2)
or (4) with » > 1, and then by Corollary 2.7(ii) we have that M must be exactly such a
chain. Finally when M does not contain any exceptional curve F; with k; = 2, then again
Corollary 2.7(ii) implies that M must be of the form (1) or (3), or (2) or (4) with r = 0.
[

Notation : Further in this section we still denote by M the minimal part of Theorem 3.3.

3.4. Remark. (a) Suppose that f is reduced. Then the algorithm of embedded resolution
easily implies that v; < Nj; for i € T, and that v; < N; if E; intersects the strict transform.
Consequently the cases (3) and (4) of (i) (and case (2) of (ii)) cannot occur in Theorem
3.3. On the other hand in (i) there exist examples of case (1) and case (2) for any r > 0.

(b) Moreover there exist examples (with non-reduced f) of case (3) and case (4) for any
r > 0. See also Proposition 3.8.

3.5. Frxample. When f is analytically irreducible at 0 (with g different Puiseux exponents),
then the resolution graph has the following form.

8



Ey Es Es By g
Its minimal part M consists just of Ey and the ratio £~ strictly increases in the sense of the

arrows. This fact was already discovered by Strauss [S Corollary 2.1] through complicated
computations. It is also implied by the following more general result.

3.6. Proposition. If the resolution graph contains a part of the form below, then the
minimal part M is E.

. B P
:E E >
2

Proof. Let E intersect Ly, Ey, ..., Ex(k > 3) and set oy = v; — $N; for i = 1,...,k. An
appropriate combination of Theorem 2.4 for all components on the path connecting F1
to E yields that a3 = 5% (see also [I1] or [L1]). Now for example by [L1, Lemme I1.2]

N
we have that N{|N and so a; < 1. The same argument yields ap < % and then again

2
Theorem 2.4, now applied to E, implies that 21-13 a; > k — 3. Since for ¢ = 3,....k we
have that a; < 1 (Proposition 2.6) we must also have that 0 < «;. |

Remark. In particular this implies that the resolution graph can contain at most one part
of the described form. (One can also see this by proving that in such a part E] or EY
must be the first created exceptional curve in the resolution process.) So we obtain an
important restriction on the shape of the (pure) resolution tree using our result on the
‘ordered tree’ structure with respect to the £~

(3.7) We already mentioned in Remark 3.4 that an analytically irreducible component of
the strict transform cannot be part of the minimal set M if f is reduced. In fact the cases
(3) and (4) of Theorem 3.3(i) are quite rare; they are only possible if some irreducible
component of f~1{0} is smooth at 0 and occurs moreover with ‘high’ multiplicity in the
divisor of f, as shown below.

3.8. Proposition. Let f = [],; fiN" be the decomposition of f in irreducible factors,
and denote by p; the multiplicity of f; at 0. If the minimal set M in Theorem 3.3(i) is as in
case (3) (respectively case (4)), then there exists j € I such that E is the strict transform
offj_l{()} and such that p; =1 and N; > Z#j piN; (respectively N; > Z#j i IN;).

(3 o— (1) o—e—e -

E E



Proof. A priori it is not clear that F is the strict transform of some f; *{0}, it could be an
analytically irreducible component of it. So let E be an analytically irreducible component
of the strict transform of fj_l{O}, and denote by E’ the exceptional curve intersecting E.

-~
-~

oO—&—
E E' ~

Let F; be the first created exceptional curve in the resolution process; it has numerical
data (Ny,v1) = (D ;7 #ilNi,2). Using the algorithm of embedded resolution it is not

difficult to show that if ;(,—11 < N%w then also ]’(,—’, < N% (respectively if ;(,—11 < Nij, then
also £ < N%) Now in case (3) we have that N% < %7, and thus N% < x, which is
equivalent to >, p;N; < (2 — p;)N;. Clearly this is only possible if p; = 1 (which

implies that fj_l{O} is analytically irreducible) and consequently Nj > >, u;N;. Case
(4) is analogous. |

3.9. Ezample. Take f =z (y% — x3)N'. Let E1, E5 and F3 denote the exceptional curves
(ordered as created), and E and E’ the strict transforms of respectively {x = 0} and
{y? — 23 = 0}. The resolution graph and numerical data are as follows.

E ,
E1(N +2N'2)
I BV BN +3N'3)
oo BN BN+ 6N 5)
E El ES E2 3 )

As N and N’ vary, cases (1), (3) and (4) of Theorem 3.3(i) can occur :

case (1)<:>M15417 & N < 2N/,

Es
case(4)<:>/\/liso_._l; < N =2N/,
E E Ej

case (3) & Mis o & N>2N.
E

(3.10) Let Hf’:l(y —A;z)% be the decomposition in linear factors of the lowest degree term

of f (so k > 1 and all A\; are different). Let also E denote the first created exceptional

curve in the resolution process; it has numerical data (N,v) = (Zle ai,2). We will prove

that if £ > 3 and if the a; differ ‘not to much’, then the minimal set M is just E.

At the stage of the process when E is just created it intersects exactly k times the
strict transform of f~'{0} in points P4, ..., P corresponding to the tangent directions in
0, determined by respectively {y — A1z = 0}, ..., {y — \gx = 0}. We leave the following fact
as an exercise for the reader.

10



Lemma. For ¢« = 1,....k let E; denote the component in the resolution space X that
intersects E in the point corresponding to P;. Then there exists ¢; € N such that
Ni = &N+az and v, = é,V—f— 1.

3.11. Proposition. Let Hle(y — Xix)® be the decomposition in linear factors of the
lowest degree term of f and let E/ denote the first created exceptional curve in the resolution
process.

(i) Suppose that k > 3. Then M is E if and only if for all i = 1,...,k we have that
a; < Z#i ag. Also M strictly contains E if and only if a; = Z#i ay for some (and thus
exactly one) i € {1,....k}.

(ii) Suppose that k = 2. Then M contains E if and only if a; = as.

Proof. Using the notations of (3.10), we have for 7 = 1,...,k that the inequality & < &+

is equivalent to %= < ai (by the lemma) and thus also to a; < >, ; ae. Analogously

i

x = K, Sa; = Ze# ag. All statements follow now easily. |

Remark. In Example 3.9 the case N = 2N’ is an example of Proposition 3.11 (ii).

(3.12) To conclude this section we mention that Theorem 3.3 can easily be generalized
for an arbitrary embedded resolution of the germ of f at 0. The only difference for an
arbitrary resolution is that the cases (2) and (4) of (i) must be extended to

\ \ \/
2) >_M_L = -
B, By E,

Voo \/
o ¥ ...
(4)
LBy Es L,

[

I\

i.e. the ‘connecting’ exceptional curves FEj, ..., E,. can intersect more than 2 other compo-
nents. The statements (ii) and (iii) remain valid.

4. POLES OF THE TOPOLOGICAL ZETA FUNCTION

(4.1) We are now ready to determine all poles of Ziop, o(s), using the ‘residue contribution’
result of Proposition 2.8 and the ordered tree structure of the resolution graph. First
Theorem 3.3 immediately implies that there is at most one pole of order two.

4.2. Theorem. Z,, o(s) has at most one pole of order 2. Moreover s is a pole of order
2 if and only if there exist two intersecting components E; and E; with so = — <+ = —%,
i J

and in that case sq is the pole closest to the origin.

Such a pole occurs if and only if we have the case (2) or (4) in Theorem 3.3(i). Moreover
when f is reduced only case (2) is possible.

11



4.3. Theorem. We have that s is a pole of Zi,p o(s) if and only if sy = —]’(,—Z for some

exceptional curve F; intersecting at least 3 times other components or sg = —ﬁ for some
irreducible component E; of the strict transform of f.

Proof. Clearly sy can only be a pole if one of these conditions is satisfied (even if sy has
order 2). Conversely let now sy = — K/} exactly for 1 € I C T. Two possibilities occur.

(I) The E;,i € I, form the minimal part M of Theorem 3.3(i). If M has the form (1)
or (3), respectively (2) or (4), then s is a pole of order 1, respectively 2. For case (1) this
is implied by Proposition 2.8(i), the other cases are trivial.

(IT) No E;,i € I, belongs to M. By Remark 2.5 we have that E;,i € I, can only
contribute to the residue of sg if ¢ € T, or if ¢+ € T, and E; intersects at least 3 other
components. Now by respectively Theorem 3.3(iii) and Proposition 2.8(ii) all such contri-
butions are strictly negative. Since by assumption there is at least one contribution we are

done. [ |

Remark. Theorems 4.2 and 4.3 are trivially true for the cases excluded in (3.1).

(4.4) More generally Denef and Loeser [DL] associate to » € N\ {0} and f € C[z,y] the
topological zeta function
x(E;) X(E; N Ej)
(#) = V-+3JN-+ Z (V'—f—SN')(l/'—Jf—SN')'
jeTe Y b figrcr M YA J
r|N; r|N;,r|Nj

(Of course this is possible in any dimension and also globally.) This expression is obtained
as a limit of Igusa’s local zeta functions, twisted by a character of order r, see [DL].

The analog of Theorem 4.2 remains true for Zt(gl)),o(s) but we cannot expect results as
in Theorem 4.3. To see this fix one exceptional curve E with r|N, intersecting k£ > 3

times other components FEi,..., Ey. For all ¢ = 1,...,k suppose that - # & and set

a; = v; — % N;. The contribution R(" of E to the residue of sy = —% for Zt(gr)),o(s) is

k
1 1
R = —(2—k —).
N( +§ai)

7"|Ni

The fact that not necessarily all i = 1,..., k occur in the sum above yields that R(") can
sometimes be zero.

An easy example is f = ™My (z — y)V3 (z + y)N* where 3Ny = Ny + N3 + Ny, 7| Ny
and r t N; for i = 2,3,4. Its unique exceptional curve has numerical data (4Ny,2),
intersects the 4 other components, but does not induce a pole of Zt(gr))’o(s); in fact Zt(gl))’o(s)
is identically zero.

(4.5) Suppose that f is defined over some number field F'. Then for almost all completions
K of F we have that Theorem 3.3 immediately implies the analog of Theorem 4.2 for

12



Igusa’s local zeta function Zk ¢(s). So Zk o(s) has at most one pole of order 2 and if so,
this pole of order 2 is the pole closest to the origin. This is a new result, refining [L1,
Lemme IV.2.3] and [V3, I114].

(4.6) We conclude with some remarks on the ‘global’ zeta function Zi,,(s). We suppose
now that (X, h) is the canonical embedded resolution of f~1{0} in A? and keep using all
other notations of (2.1). Now f~1{0} can have several singular points, which all contribute
to the zeta function.

(i) One easily sees that Theorem 4.2 cannot be true for Zi,,(s); of course it is still true
that sg is a pole of order 2 if and only if there exist two intersecting components F; and
E; with s = —% = —K,—Z_, but an arbitrary number of poles of order 2 can occur.

(ii) Also Theorem 4.3 is in general not true for Zi,,(s). To find a counterexample one
can search for a curve f~1{0} with (at least 2) singularities P;, each producing in its local
resolution an exceptional curve F; (intersecting at least 3 times other components), such
that all F; have the same ratio of numerical data %, and such that all contributions R; to
the residue of s¢ = —]’(,—Z for Ziop(s) satisfy >, R; = 0. A concrete example with moreover
f irreducible is

5

=W -2+ P - (#-1)%) + (- 1) H(y —Xi(z+ 1)+~

where N is big enough. It has 3 singular points : an ordinary 5-fold singularity and two
times the germ of {y3(y? — 22) + 25 = 0} at 0; their contribution to the residue of sy = —2
for Ziop(s) is respectively 12 and two times —%.

(iii) When f is reduced it is still true that sg = —1 (induced by the strict transform of
f71{0}) is always a pole of Zi,p,(s), since in this case all contributions to its residue are

strictly negative (see Remark 3.4).

(4.7) We can give a negative answer to the analogous question in (1.4) for Z.,(s) and
Zk(s). Le. if f is defined over a number field F' then it can happen that sy is a pole
of Zk(s) for almost all completions K of F, but that it is not a pole of Zi,(s). This
follows from (4.6(ii)) and [V1, Theorem 3.2], where we proved that an exceptional curve
E;, intersecting at least 3 times other components, always induces a pole of Zg(s) for
almost all completions K of a big enough F'.
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