Professor at the University of Leuven (KU Leuven), Doctor Honoris Causa of Ovidius University of Constanța, Department of Mathematics, Section of Algebra.

Electronic mail adress

wim.veys (at) kuleuven.be

Fields of Research

Algebraic Geometry, Singularity Theory, Applications in Number Theory.

Specific Research topics

  • Exceptional divisor of an embedded resolution,
  • Zeta Functions (Igusa, topological, motivic),
  • Monodromy,
  • Configurations of curves on surfaces,
  • Surface singularities,
  • Stringy invariants,
  • Principal value integrals,
  • Newton trees,
  • Exponential sums, Kloosterman sums,
  • Divisorial valuations.

Co-authors

Hans Baumers, Bart Bories, Pierrette Cassou-Noguès, Thomas Cauwbergs, Raf Cluckers, Evi Daems, Jan Denef, Ke Gong, Arno Kuijlaars, Ann Laeremans, Ann Lemahieu, Edwin León-Cardenal, Alejandro Melle, András Némethi, Bart Rodrigues, Jan Schepers, Dirk Segers, Tristan Torrelli, Leen Van Langenhoven, Lise Van Proeyen, Daqing Wan, Wilson Zúñiga-Galindo.

Address

University of Leuven Department of Mathematics Celestijnenlaan 200B B-3001 Leuven (Heverlee) Belgium

Office phone

(+32)16-327092

Office fax

(+32)16-327998

Links

Dr. Bart Rodrigues: Geometric determination of the poles of motivic and topological zeta functions, May 2002.
Dr. Dirk Segers: Smallest poles of Igusa's and topological zeta functions and solutions of polynomial congruences, April 2004.
Dr. Jan Schepers: Stringy invariants of singular algebraic varieties, May 2006.
Dr. Ann Lemahieu (other advisor: Antonio Campillo, Univ. Valladolid): Poincaré series and zeta functions, March 2007.
Dr. Filip Cools (other advisor: Marc Coppens): Grassmann secant varieties and plane curves with total inflection points, May 2007.
Dr. Lise Van Proeyen: Local zeta functions for ideals and the monodromy conjecture, July 2008.
Dr. Tim Wouters (other advisor: Philippe Gille, Paris): Cohomological approach of obstructions for the existence of rational points, May 2010.
Dr. Bart Bories: Zeta functions, Bernstein-Sato polynomials, and the monodromy conjecture, April 2013.
Dr. Leen Van Langenhoven: Semigroup and Poincaré series for divisorial valuations, October 2013.
Dr. Ferran Dachs-Cadefau (other advisor: Josep Alvarez, Maria Alberich): Multiplier ideals in two-dimensional local rings with rational singularities, June 2016.
Dr. Thomas Cauwbergs (other advisor: Johannes Nicaise): Motivic Zeta Functions, Splicing and the Milnor Fibration, July 2016.
Dr. Marta Panizzut (other advisor: Filip Cools, Marc Coppens): Linear systems on metric graphs, gonality and lifting problems, October 2016.
Dr. Hans Baumers: Jumping numbers in higher dimensions: computation and contribution by exceptional divisors, October 2016.
Jasper Van Hirtum (other advisor: Gabor Wiese, Jan Tuitman): Computation and asymptotics of coefficients of modular forms.
Saskia Chambille (other advisor: Raf Cluckers): Exponential sums.
Lena Vos: The monodromy conjecture for ideals.
Available with PDF(pdf) and/or PS(PS) starting from 1992.
Monodromy eigenvalues and poles of zeta functions
T. Cauwbergs and W. Veys, Bulletin of the London Mathematical society, (to appear), 10p.
Contribution of jumping numbers by exceptional divisors
H. Baumers and W. Veys, preprint, (2016), 21p.
Power moments of Kloosterman sums
K. Gong, W. Veys and D. Wan, Journal of Number Theory, 164, (2016), 103-126.
Igusa's p-adic local zeta function and the monodromy conjecture for non-degenerated surface singularities
B. Bories and W. Veys, Memoirs of the American Mathematical Society, 242, 1145, (2016), vii+131pp.
Bounds for \(p\)-adic exponential sums and log-canonical thresholds
R. Cluckers and W. Veys, American Journal of Mathematics, 138, 1, (2016), 61-80.
Zeta functions and oscillatory integrals for meromorphic functions
W. Veys and W. Zuniga-Galindo, Advances in Mathematics, (to appear), 36p.
The Newton tree: geometric interpretation and applications to the motivic zeta function and the log canonical threshold
P. Cassou-Noguès and W. Veys, Mathematical Proceedings of the Cambridge Philosophical Society, 159, (2015), 481-515.
Semigroup and Poincaré series for a finite set of divisorial valuations
L. Van Langenhoven and W. Veys, Revista Matematica Complutense, 28, 1, (2015), 191-225.
Newton trees for ideals in two variables and applications
P. Cassou-Noguès and W. Veys, Proceedings of the London Mathematical Society, 108, 4, (2014), 869-910.
Bridging Algebra, Geometry, and Topology. Proceedings of "Experimental and Theoretical Methods in Algebra, Geometry and Topology", Eforie Nord, Romania, June 21-24, 2013
D. Ibadula and W. Veys, Editors, Springer Proceedings in Mathematics & Statistics, 96, (2014), xii+289 pp.
Poles of Archimedean zeta functions for analytic mappings
E. Leon-Cardenal, W. Veys and W. Zuniga-Galindo, Journal of the London Mathematical Society, 87, (2013), 1-21.
Zeta functions in algebra and geometry, Papers from the 2nd International Workshop held at the Universitat de les Illes Balears, Palma de Mallorca, May 3-7, 2010
A. Campillo, G. Cardona, A. Melle-Hernández, W. Veys and W. Zúñiga- Galindo, Editors, Contemporary Mathematics, 566. American Mathematical Society, Providence, RI; Real Sociedad Matemática Española, Madrid, (2012), xvi+344 pp.
Generalized monodromy conjecture in dimension two
A. Némethi and W. Veys, Geometry & Topology, 16, (2012), 155-217.
On the local zeta functions and b-functions of certain hyperplane arrangements
N. Budur, M. Saito and S. Yuzvinski, With an appendix by W. Veys, Journal of the London Mathematical Society, 84, 2, (2011), 631-648.
Monodromy Jordan blocks, b-functions and poles of zeta functions for germs of plane curves
A. Melle-Hernández, T. Torrelli and W. Veys, Journal of Algebra, 324, 6, (2010), 1364-1382.
Monodromy eigenvalues are induced by poles of zeta functions: the irreducible curve case
A. Némethi and W. Veys, The Bulletin of the London Mathematical Society, 42, 2, (2010), 312-322.
The Monodromy Conjecture for zeta functions associated to ideals in dimension two
L. Van Proeyen and W. Veys, Annales de l'Institut Fourier, 60, 4, (2010), 1347-1362.
On 'maximal' poles of zeta functions, roots of b-functions, and monodromy Jordan blocks
A. Melle-Hernández, T. Torrelli and W. Veys, Journal of Topology, 2, 3, (2009), 517-526.
Stringy E-functions of hypersurfaces and of Brieskorn singularities
J. Schepers and W. Veys, Advances in Geometry, 9, 2, (2009), 199-217.
Zeta functions and monodromy for surfaces that are general for a toric idealistic cluster
A. Lemahieu and W. Veys, International Mathematics Research Notices, 1, (2009), 11-62.
Poles of the topological zeta function associated to an ideal in dimension two
L. Van Proeyen and W. Veys, Mathematische Zeitschrift, 260, 3, (2008), 615-627.
Asymptotics of non-intersecting Brownian motions and a 4x4 Riemann-Hilbert problem
E. Daems, A. Kuijlaars and W. Veys, Journal of Approximation Theory, 153, 2, (2008), 225-256.
Zeta functions for polynomial mappings, log-principalization of ideals, and Newton polyhedra
W. Veys and W. Zuniga-Galindo, Transactions of the American Mathematical Society, 360, (2008), 2205-2227.
Stringy Hodge numbers for a class of isolated singularities and for threefolds
J. Schepers and W. Veys, International Mathematics Research Notices, (2007), ID rnm016.
On monodromy for a class of surfaces
A. Lemahieu and W. Veys, Comptes Rendus de l'Académie des Sciences. Série I, Mathématique, 345, (2007), 633-638.
The motivic zeta function and its smallest poles
D. Segers, L. Van Proeyen and W. Veys, Journal of Algebra, 317, (2007), 851-866.
On motivic principal value integrals
W. Veys, Mathematical Proceedings of the Cambridge Philosophical Society, 143, (2007), 543-555.
Monodromy eigenvalues and zeta functions with differential forms
W. Veys, Advances in Mathematics, 213, (2007), 341-357.
On the poles of topological zeta functions
A. Lemahieu, D. Segers and W. Veys, Proceedings of the American Mathematical Society, 134, 12, (2006), 3429-3436.
Vanishing of principal value integrals on surfaces
W. Veys, Journal fur die Reine und Angewandte Mathematik, 598, (2006), 139-158.
Arc spaces, motivic integration and stringy invariants
W. Veys, Izumiya, S. et al. (Ed.), Advanced Studies in Pure Mathematics 43, Singularity theory and its applications, Sapporo, 16-25 September 2003, (2006), 529-572, Tokyo, Mathematical Society of Japan.
Stringy invariants of normal surfaces
W. Veys, Journal of Algebraic Geometry, 13, 1, (2004), 115-141.
On the smallest poles of topological zeta functions
D. Segers and W. Veys, Compositio Mathematica, 140, 1, (2004), 130-144.
Stringy zeta functions for \(\mathbb{Q}\)-Gorenstein varieties
W. Veys, Duke Mathematical Journal, 120, 3, (2003), 469-514.
Poles of zeta functions on normal surfaces
B. Rodrigues and W. Veys, Proceedings of the London Mathematical Society, 87, (2003), 164-196.
Holomorphy of Igusa's and topological zeta functions for homogeneous polynomials
B. Rodrigues and W. Veys, Pacific Journal of Mathematics, 201, 2, (2001), 429-440.
Zeta functions and 'Kontsevich invariants' on singular varieties
W. Veys, Canadian Journal of Mathematics-Journal Canadien de Mathématiques, 53, 4, (2001), 834-865.
Embedded resolution of singularities and Igusa's local zeta function
W. Veys, Academiae Analecta: Mededelingen van de Koninklijke Academie voor Wetenschappen, Letteren, (2001), 1-56.
The topological zeta function associated to a function on a normal surface germ
W. Veys, Topology, 38, 2, (1999), 439-456.
On the poles of maximal order of the topological zeta function
A. Laeremans and W. Veys, Bulletin of the London Mathematical Society, 31, (1999), 441-449.
More congruences for numerical data of an embedded resolution
W. Veys, Compositio Mathematica, 112, 3, (1998), 313-331.
Structure of rational open surfaces with non-positive Euler characteristic
W. Veys, Mathematische Annalen, 312, 3, (1998), 527-548.
Zeta functions for curves and log canonical models
W. Veys, Proceedings of the London Mathematical Society, 74, (1997), 360-378.
On Euler characteristics associated to exceptional divisors
W. Veys, Transactions of the American Mathematical Society, 347, 9, (1995), 3287-3300.
Determination of the poles of the topological zeta function for curves
W. Veys, Manuscripta Mathematica, 87, 4, (1995), 435-448.
On the holomorphy conjecture for Igusa's local zeta function
J. Denef and W. Veys, Proceedings of the American Mathematical Society, 123, 10, (1995), 2981-2988.
Holomorphy of local zeta functions for curves
W. Veys, Mathematische Annalen, 295, 4, (1993), 635-641.
Poles of Igusa's local zeta function and monodromy
W. Veys, Bulletin de la Société Mathématique de France, 121, 4, (1993), 545-598.
Reduction modulo \(p^n\) of \(p\)-adic subanalytic sets
W. Veys, Mathematical Proceedings of the Cambridge Philosophical Society, 112, (1992), 483-486.
Congruences for numerical data of an embedded resolution
W. Veys, Compositio Mathematica, 80, 2, (1991), 151-169.
Relations between numerical data of an embedded resolution
W. Veys, American Journal of Mathematics, 113, 4, (1991), 573-592.
Relations between numerical data of an embedded resolution
W. Veys, Astérisque, 198, (1991), 397-403.
On the poles of Igusa's local zeta function for curves
W. Veys, Journal of the London Mathematical Society-second series, 41, (1990), 27-32.
On the poles of local zeta functions for curves
W. Veys, Bueso, J. et al. (Ed.), Proceedings of the 1st Belgian-Spanish week on Algebra and Geometry, Belgian-Spanish week on Algebra and Geometry, Antwerpen, 8-15 July 1988, (1988), 173-181.
Last revised: January 2017
Design and coding by Thomas Cauwbergs